Una demostración elemental del teorema de punto fijo de Brouwer en Rn

Descripción del Articulo

Presenta una demostración sencilla y detallada en el espacio Rn del teorema de punto fijo de Brouwer, cuyo enunciado es n ∈ N y g una aplicación continua de [0, 1]n en [0, 1]n. Entonces existe z ∈ [0, 1]n tal que g(z) = z. Para lograr el objetivo del presente trabajo se utilizó el teorema de Bolzano...

Descripción completa

Detalles Bibliográficos
Autor: Huamán Núñez, Joel Macario
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/21313
Enlace del recurso:https://hdl.handle.net/20.500.12672/21313
Nivel de acceso:acceso abierto
Materia:Teoría del punto fijo
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.01
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:Presenta una demostración sencilla y detallada en el espacio Rn del teorema de punto fijo de Brouwer, cuyo enunciado es n ∈ N y g una aplicación continua de [0, 1]n en [0, 1]n. Entonces existe z ∈ [0, 1]n tal que g(z) = z. Para lograr el objetivo del presente trabajo se utilizó el teorema de Bolzano-Weierstrass asociado a un teorema de etiquetado. El teorema del punto fijo de Brouwer es un resultado importante en la topología y la teoría de conjuntos que establece que, en un espacio topológico convexo y compacto, cualquier función continua que aplica el espacio en sí mismo tiene al menos un punto fijo, es decir, un punto en el espacio que se aplica en sí mismo bajo la función. Se demuestra dicho teorema utilizando la idea de etiquetado y cadenas, consideremos un espacio topológico X que representa el conjunto de todas las etiquetas posibles en el contexto. Suponer que se tiene una función continua f : X → X que asigna una etiqueta a otra etiqueta; así la tarea se reduce a demostrar que f tiene al menos un punto fijo.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).