Sobre el grupo de trenza para RP2
Descripción del Articulo
En este trabajo presentamos un estudio básico sobre el grupo de trenzas de Artin Bn. Introducimos los espacios de configuración Fn(M) y Fn(M)= n para una variedad M. En el caso M = R2, se mostrará que los grupos fundamentales de los espacios Fn(R2) y Fn(R2)= n son isomorfos a los grupos de trenzas p...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2013 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/3416 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/3416 |
Nivel de acceso: | acceso abierto |
Materia: | Teoría de trenza https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
UNMS_e803fbf7d32ab0e2752917d0660cfebb |
---|---|
oai_identifier_str |
oai:cybertesis.unmsm.edu.pe:20.500.12672/3416 |
network_acronym_str |
UNMS |
network_name_str |
UNMSM-Tesis |
repository_id_str |
410 |
dc.title.none.fl_str_mv |
Sobre el grupo de trenza para RP2 |
title |
Sobre el grupo de trenza para RP2 |
spellingShingle |
Sobre el grupo de trenza para RP2 Bravo Quispe, Maribel Rosa Teoría de trenza https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Sobre el grupo de trenza para RP2 |
title_full |
Sobre el grupo de trenza para RP2 |
title_fullStr |
Sobre el grupo de trenza para RP2 |
title_full_unstemmed |
Sobre el grupo de trenza para RP2 |
title_sort |
Sobre el grupo de trenza para RP2 |
author |
Bravo Quispe, Maribel Rosa |
author_facet |
Bravo Quispe, Maribel Rosa |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
García Armas, Agripino |
dc.contributor.author.fl_str_mv |
Bravo Quispe, Maribel Rosa |
dc.subject.none.fl_str_mv |
Teoría de trenza |
topic |
Teoría de trenza https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
En este trabajo presentamos un estudio básico sobre el grupo de trenzas de Artin Bn. Introducimos los espacios de configuración Fn(M) y Fn(M)= n para una variedad M. En el caso M = R2, se mostrará que los grupos fundamentales de los espacios Fn(R2) y Fn(R2)= n son isomorfos a los grupos de trenzas puras Pn y grupo de trenzas de Artin Bn respectivamente. Motivados por este hecho, se define el grupo de trenzas de superficies Pn(M), Bn(M). Por último, concluimos haciendo un estudio a los grupos de trenza del plano proyectivo real Pn(RP2) y Bn(RP2). PALABRAS CLAVES: TRENZA ALGEBRAICA, DIAGRAMAS DE TRENZA, TRENZAS PURAS, ESPACIO DE CONFIGURACIÓN, PLANO PROYECTIVO REAL. |
publishDate |
2013 |
dc.date.accessioned.none.fl_str_mv |
2014-01-08T21:29:06Z |
dc.date.available.none.fl_str_mv |
2014-01-08T21:29:06Z |
dc.date.issued.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12672/3416 |
url |
https://hdl.handle.net/20.500.12672/3416 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Repositorio de Tesis - UNMSM Universidad Nacional Mayor de San Marcos reponame:UNMSM-Tesis instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
UNMSM-Tesis |
collection |
UNMSM-Tesis |
bitstream.url.fl_str_mv |
https://cybertesis.unmsm.edu.pe/bitstreams/9388bf2d-44c0-419a-9cef-600a76744b29/download https://cybertesis.unmsm.edu.pe/bitstreams/bf51c32b-d43d-4992-ae48-a780ab7676a6/download https://cybertesis.unmsm.edu.pe/bitstreams/c51f2879-37a0-499a-b176-69428a18cacd/download https://cybertesis.unmsm.edu.pe/bitstreams/e60bfe15-0108-4d8c-a7bb-e00584834306/download |
bitstream.checksum.fl_str_mv |
d7ce8b55b9b18e52afb4aef0c7f7a649 8a4605be74aa9ea9d79846c1fba20a33 c17ee45826c77fc565911fdd695a92db 1d40fb203936c717dfa3754fabcd43c4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Cybertesis UNMSM |
repository.mail.fl_str_mv |
cybertesis@unmsm.edu.pe |
_version_ |
1841545005184843776 |
spelling |
García Armas, AgripinoBravo Quispe, Maribel Rosa2014-01-08T21:29:06Z2014-01-08T21:29:06Z2013https://hdl.handle.net/20.500.12672/3416En este trabajo presentamos un estudio básico sobre el grupo de trenzas de Artin Bn. Introducimos los espacios de configuración Fn(M) y Fn(M)= n para una variedad M. En el caso M = R2, se mostrará que los grupos fundamentales de los espacios Fn(R2) y Fn(R2)= n son isomorfos a los grupos de trenzas puras Pn y grupo de trenzas de Artin Bn respectivamente. Motivados por este hecho, se define el grupo de trenzas de superficies Pn(M), Bn(M). Por último, concluimos haciendo un estudio a los grupos de trenza del plano proyectivo real Pn(RP2) y Bn(RP2). PALABRAS CLAVES: TRENZA ALGEBRAICA, DIAGRAMAS DE TRENZA, TRENZAS PURAS, ESPACIO DE CONFIGURACIÓN, PLANO PROYECTIVO REAL.In this work we present a basic study about the group of Artin’s braids, Bn. We introduce the configuration spaces Fn(M) and Fn(M)= n for a manifold M. In the case where M = R2 we will show that the fundamental groups of the spaces Fn(R2) and Fn(R2)= n are isomorphic to the group of pure braids Pn and the group of braids of Artin Bn respectively. Motivated by that fact, we will define groups of braids of surfaces Pn(M) and Bn(M). Lastly, we will do a study of the braid groups of the real projective plane Pn(RP2) and Bn(RP2). KEY WORDS: ALGEBRAIC BRAIDS, BRAIDS DIAGRAMS, PURE BRAIDS, CONFIGURATION SPACES, REAL PROJECTIVE PLANE.TesisspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio de Tesis - UNMSMUniversidad Nacional Mayor de San Marcosreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMTeoría de trenzahttps://purl.org/pe-repo/ocde/ford#1.01.00Sobre el grupo de trenza para RP2info:eu-repo/semantics/bachelorThesisSUNEDULicenciada en MatemáticaUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Académico Profesional de MatemáticaMatemática10321859https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALBravo_qm.pdfBravo_qm.pdfapplication/pdf3203436https://cybertesis.unmsm.edu.pe/bitstreams/9388bf2d-44c0-419a-9cef-600a76744b29/downloadd7ce8b55b9b18e52afb4aef0c7f7a649MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/bf51c32b-d43d-4992-ae48-a780ab7676a6/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTBravo_qm.pdf.txtBravo_qm.pdf.txtExtracted texttext/plain107796https://cybertesis.unmsm.edu.pe/bitstreams/c51f2879-37a0-499a-b176-69428a18cacd/downloadc17ee45826c77fc565911fdd695a92dbMD55THUMBNAILBravo_qm.pdf.jpgBravo_qm.pdf.jpgGenerated Thumbnailimage/jpeg11293https://cybertesis.unmsm.edu.pe/bitstreams/e60bfe15-0108-4d8c-a7bb-e00584834306/download1d40fb203936c717dfa3754fabcd43c4MD5620.500.12672/3416oai:cybertesis.unmsm.edu.pe:20.500.12672/34162024-08-15 23:40:14.487https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.87381 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).