Modelo de clases latentes multinivel aplicado a un caso
Descripción del Articulo
El presente trabajo tiene como objetivo investigar el Modelo de Clases Latentes Multinivel (MCLM). Este modelo es una extensión muy importante del Modelo de Clases Latentes (MCL), cuyo objetivo principal es el de construir perfiles, a partir de un conjunto de variables categóricas observadas; bajo e...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2015 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/4062 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/4062 |
Nivel de acceso: | acceso abierto |
Materia: | Modelo de Clases Latentes Algoritmo EM https://purl.org/pe-repo/ocde/ford#1.01.03 |
id |
UNMS_d4179399de7029bf17933c5978d9e065 |
---|---|
oai_identifier_str |
oai:cybertesis.unmsm.edu.pe:20.500.12672/4062 |
network_acronym_str |
UNMS |
network_name_str |
UNMSM-Tesis |
repository_id_str |
410 |
dc.title.none.fl_str_mv |
Modelo de clases latentes multinivel aplicado a un caso |
title |
Modelo de clases latentes multinivel aplicado a un caso |
spellingShingle |
Modelo de clases latentes multinivel aplicado a un caso Cotrina Salas, Melissa Sheedy Modelo de Clases Latentes Algoritmo EM https://purl.org/pe-repo/ocde/ford#1.01.03 |
title_short |
Modelo de clases latentes multinivel aplicado a un caso |
title_full |
Modelo de clases latentes multinivel aplicado a un caso |
title_fullStr |
Modelo de clases latentes multinivel aplicado a un caso |
title_full_unstemmed |
Modelo de clases latentes multinivel aplicado a un caso |
title_sort |
Modelo de clases latentes multinivel aplicado a un caso |
author |
Cotrina Salas, Melissa Sheedy |
author_facet |
Cotrina Salas, Melissa Sheedy |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Cambillo Moyano, Emma Norma |
dc.contributor.author.fl_str_mv |
Cotrina Salas, Melissa Sheedy |
dc.subject.none.fl_str_mv |
Modelo de Clases Latentes Algoritmo EM |
topic |
Modelo de Clases Latentes Algoritmo EM https://purl.org/pe-repo/ocde/ford#1.01.03 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.03 |
description |
El presente trabajo tiene como objetivo investigar el Modelo de Clases Latentes Multinivel (MCLM). Este modelo es una extensión muy importante del Modelo de Clases Latentes (MCL), cuyo objetivo principal es el de construir perfiles, a partir de un conjunto de variables categóricas observadas; bajo el supuesto de independencia entre observaciones, lo que frecuentemente es vulnerado si se analizan datos que presentan cierta jerarquía. El MCLM es un modelo que permite analizar los datos modificando este supuesto, al incorporar variables latentes discretas en todos los niveles de la jerarquía, con la finalidad de conseguir una solución óptima del número de subclases o perfiles que pertenecen a cada una de estas variables latentes. Finalmente se utilizó el MCLM para determinar los niveles de depresión de una muestra de 399 internos pertenecientes a ocho establecimientos penitenciarios del país, Para el análisis se consideró un MCLM con tres clases latentes en el primer nivel, tomando en cuenta los resultados anteriores se consideró segmentar a los establecimientos penitenciarios en tres grupos: el primero, conformado por una mayor proporción de internos que fueron clasificados como “moderadamente afectados” por la depresión (58%); el segundo grupo presentó una mayor proporción de internos “altamente afectados” por esta enfermedad (69%) y el último grupo, conformado exclusivamente por internas que en su mayoría no presentaron episodios depresivos (85%). |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2015-03-19T16:57:23Z |
dc.date.available.none.fl_str_mv |
2015-03-19T16:57:23Z |
dc.date.issued.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12672/4062 |
url |
https://hdl.handle.net/20.500.12672/4062 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Repositorio de Tesis - UNMSM Universidad Nacional Mayor de San Marcos reponame:UNMSM-Tesis instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
UNMSM-Tesis |
collection |
UNMSM-Tesis |
bitstream.url.fl_str_mv |
https://cybertesis.unmsm.edu.pe/bitstreams/f4750723-fed1-4305-ad25-5c996adc68bf/download https://cybertesis.unmsm.edu.pe/bitstreams/43adff6d-6696-4f97-a998-d8bfcebeea82/download https://cybertesis.unmsm.edu.pe/bitstreams/80bc4b6c-0168-4092-add3-9280cd641d6a/download https://cybertesis.unmsm.edu.pe/bitstreams/0cfa267d-f339-4e24-b102-f62f88f305e2/download |
bitstream.checksum.fl_str_mv |
e32b737e6e71d95cb168c75340ab8691 8a4605be74aa9ea9d79846c1fba20a33 621913742ef0d63a5b1c19868bcb6fb2 be91e9f129bec8115e0a9db593c1d0b1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Cybertesis UNMSM |
repository.mail.fl_str_mv |
cybertesis@unmsm.edu.pe |
_version_ |
1841549485280329728 |
spelling |
Cambillo Moyano, Emma NormaCotrina Salas, Melissa Sheedy2015-03-19T16:57:23Z2015-03-19T16:57:23Z2015https://hdl.handle.net/20.500.12672/4062El presente trabajo tiene como objetivo investigar el Modelo de Clases Latentes Multinivel (MCLM). Este modelo es una extensión muy importante del Modelo de Clases Latentes (MCL), cuyo objetivo principal es el de construir perfiles, a partir de un conjunto de variables categóricas observadas; bajo el supuesto de independencia entre observaciones, lo que frecuentemente es vulnerado si se analizan datos que presentan cierta jerarquía. El MCLM es un modelo que permite analizar los datos modificando este supuesto, al incorporar variables latentes discretas en todos los niveles de la jerarquía, con la finalidad de conseguir una solución óptima del número de subclases o perfiles que pertenecen a cada una de estas variables latentes. Finalmente se utilizó el MCLM para determinar los niveles de depresión de una muestra de 399 internos pertenecientes a ocho establecimientos penitenciarios del país, Para el análisis se consideró un MCLM con tres clases latentes en el primer nivel, tomando en cuenta los resultados anteriores se consideró segmentar a los establecimientos penitenciarios en tres grupos: el primero, conformado por una mayor proporción de internos que fueron clasificados como “moderadamente afectados” por la depresión (58%); el segundo grupo presentó una mayor proporción de internos “altamente afectados” por esta enfermedad (69%) y el último grupo, conformado exclusivamente por internas que en su mayoría no presentaron episodios depresivos (85%).TesisspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio de Tesis - UNMSMUniversidad Nacional Mayor de San Marcosreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMModelo de Clases LatentesAlgoritmo EMhttps://purl.org/pe-repo/ocde/ford#1.01.03Modelo de clases latentes multinivel aplicado a un casoinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en EstadísticaUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Académico Profesional de EstadísticaEstadística15377390https://orcid.org/0000-0003-3173-9425https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALCotrina_sm.pdfCotrina_sm.pdfapplication/pdf3802699https://cybertesis.unmsm.edu.pe/bitstreams/f4750723-fed1-4305-ad25-5c996adc68bf/downloade32b737e6e71d95cb168c75340ab8691MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/43adff6d-6696-4f97-a998-d8bfcebeea82/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCotrina_sm.pdf.txtCotrina_sm.pdf.txtExtracted texttext/plain102988https://cybertesis.unmsm.edu.pe/bitstreams/80bc4b6c-0168-4092-add3-9280cd641d6a/download621913742ef0d63a5b1c19868bcb6fb2MD55THUMBNAILCotrina_sm.pdf.jpgCotrina_sm.pdf.jpgGenerated Thumbnailimage/jpeg12320https://cybertesis.unmsm.edu.pe/bitstreams/0cfa267d-f339-4e24-b102-f62f88f305e2/downloadbe91e9f129bec8115e0a9db593c1d0b1MD5620.500.12672/4062oai:cybertesis.unmsm.edu.pe:20.500.12672/40622024-08-16 02:28:28.738https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.461011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).