Homología del espacio de configuraciones del espacio proyectivo complejo
Descripción del Articulo
Este trabajo es una introducción a los espacios de configuraciones de espacios topológicos, para ello en el capítulo I se da algunas definiciones y resultados de topología y algebra que serán utilizados en el presente trabajo. En el capítulo II se cubre la teoría fundamental de los espacios de confi...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2014 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/17394 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/17394 |
Nivel de acceso: | acceso abierto |
Materia: | Teoría homológica Topología algebraica https://purl.org/pe-repo/ocde/ford#1.01.01 |
id |
UNMS_c4f750a954e307d7a9a42223c25bbbf4 |
---|---|
oai_identifier_str |
oai:cybertesis.unmsm.edu.pe:20.500.12672/17394 |
network_acronym_str |
UNMS |
network_name_str |
UNMSM-Tesis |
repository_id_str |
410 |
dc.title.none.fl_str_mv |
Homología del espacio de configuraciones del espacio proyectivo complejo |
title |
Homología del espacio de configuraciones del espacio proyectivo complejo |
spellingShingle |
Homología del espacio de configuraciones del espacio proyectivo complejo Ipanaqué Zapata, César Augusto Teoría homológica Topología algebraica https://purl.org/pe-repo/ocde/ford#1.01.01 |
title_short |
Homología del espacio de configuraciones del espacio proyectivo complejo |
title_full |
Homología del espacio de configuraciones del espacio proyectivo complejo |
title_fullStr |
Homología del espacio de configuraciones del espacio proyectivo complejo |
title_full_unstemmed |
Homología del espacio de configuraciones del espacio proyectivo complejo |
title_sort |
Homología del espacio de configuraciones del espacio proyectivo complejo |
author |
Ipanaqué Zapata, César Augusto |
author_facet |
Ipanaqué Zapata, César Augusto |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
García Armas, Agripino |
dc.contributor.author.fl_str_mv |
Ipanaqué Zapata, César Augusto |
dc.subject.none.fl_str_mv |
Teoría homológica Topología algebraica |
topic |
Teoría homológica Topología algebraica https://purl.org/pe-repo/ocde/ford#1.01.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.01 |
description |
Este trabajo es una introducción a los espacios de configuraciones de espacios topológicos, para ello en el capítulo I se da algunas definiciones y resultados de topología y algebra que serán utilizados en el presente trabajo. En el capítulo II se cubre la teoría fundamental de los espacios de configuraciones para espacios topológicos generales y muestra algunos resultados para ciertos espacios. Por ejemplo se tiene Conf(Sn, 2) ≃ Sn, Conf(Rn, k) ≈ Rn × Conf(Rn \ {0}, k − 1). En general el problema de conocer la configuracion de un espacio cualquiera aún no está resuelto. En el capítulo III , se presenta a un objeto que se relaciona con los espacios de configuraciones, las cuales son conocidas como trenzas, quienes fueron estudiadas por E. Artín en [2]. Para familiarizarnos con ellas damos una prueba geométrica que los grupos fundamentales del espacio de configuraciones ordenado y no ordenado de k puntos en R2 son isomorfos al grupo de trenzas puras y al grupo de trenzas de Artín respectivamente. Determinar la homología de los espacios de configuraciones para una variedad en general es un problema abierto. Nuestro objetivo es calcular el grupo de homología del espacio de configuraciones del espacio proyectivo complejo, es por eso que en el capítulo IV, se dan a conocer las variedades topologías y se estudia el espacio proyectivo complejo. Finalmente mostraremos que π1(Conf(CPn, 2)) = 0 lo cual nos dice que el espacio proyectivo complejo es simplemente conexo, y además H1(Conf(CPn, 2)) = 0 , ∀n ≥ 1. |
publishDate |
2014 |
dc.date.accessioned.none.fl_str_mv |
2021-12-22T22:55:44Z |
dc.date.available.none.fl_str_mv |
2021-12-22T22:55:44Z |
dc.date.issued.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.citation.none.fl_str_mv |
Ipanaqué, C. (2014). Homología del espacio de configuraciones del espacio proyectivo complejo. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12672/17394 |
identifier_str_mv |
Ipanaqué, C. (2014). Homología del espacio de configuraciones del espacio proyectivo complejo. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM. |
url |
https://hdl.handle.net/20.500.12672/17394 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos Repositorio de Tesis - UNMSM reponame:UNMSM-Tesis instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
UNMSM-Tesis |
collection |
UNMSM-Tesis |
bitstream.url.fl_str_mv |
https://cybertesis.unmsm.edu.pe/bitstreams/04055d10-7a86-47d8-99bd-83eabb0d73a4/download https://cybertesis.unmsm.edu.pe/bitstreams/48199046-97cf-4c29-b547-ab21faae92a4/download https://cybertesis.unmsm.edu.pe/bitstreams/88fdca69-eab6-4cf0-9246-1cbfaa846cf6/download https://cybertesis.unmsm.edu.pe/bitstreams/65637eee-ea14-413b-bd81-474bd246492c/download |
bitstream.checksum.fl_str_mv |
e9c292691f0098be660ac6b59ad15688 8a4605be74aa9ea9d79846c1fba20a33 17d4af80ce263258d73868c2dd899b15 341d807f18880cf10dfe97f6b1aa33fc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Cybertesis UNMSM |
repository.mail.fl_str_mv |
cybertesis@unmsm.edu.pe |
_version_ |
1841552104631566336 |
spelling |
García Armas, AgripinoIpanaqué Zapata, César Augusto2021-12-22T22:55:44Z2021-12-22T22:55:44Z2014Ipanaqué, C. (2014). Homología del espacio de configuraciones del espacio proyectivo complejo. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/17394Este trabajo es una introducción a los espacios de configuraciones de espacios topológicos, para ello en el capítulo I se da algunas definiciones y resultados de topología y algebra que serán utilizados en el presente trabajo. En el capítulo II se cubre la teoría fundamental de los espacios de configuraciones para espacios topológicos generales y muestra algunos resultados para ciertos espacios. Por ejemplo se tiene Conf(Sn, 2) ≃ Sn, Conf(Rn, k) ≈ Rn × Conf(Rn \ {0}, k − 1). En general el problema de conocer la configuracion de un espacio cualquiera aún no está resuelto. En el capítulo III , se presenta a un objeto que se relaciona con los espacios de configuraciones, las cuales son conocidas como trenzas, quienes fueron estudiadas por E. Artín en [2]. Para familiarizarnos con ellas damos una prueba geométrica que los grupos fundamentales del espacio de configuraciones ordenado y no ordenado de k puntos en R2 son isomorfos al grupo de trenzas puras y al grupo de trenzas de Artín respectivamente. Determinar la homología de los espacios de configuraciones para una variedad en general es un problema abierto. Nuestro objetivo es calcular el grupo de homología del espacio de configuraciones del espacio proyectivo complejo, es por eso que en el capítulo IV, se dan a conocer las variedades topologías y se estudia el espacio proyectivo complejo. Finalmente mostraremos que π1(Conf(CPn, 2)) = 0 lo cual nos dice que el espacio proyectivo complejo es simplemente conexo, y además H1(Conf(CPn, 2)) = 0 , ∀n ≥ 1.application/pdfspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Nacional Mayor de San MarcosRepositorio de Tesis - UNMSMreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMTeoría homológicaTopología algebraicahttps://purl.org/pe-repo/ocde/ford#1.01.01Homología del espacio de configuraciones del espacio proyectivo complejoinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Profesional de MatemáticaMatemática10321859541026Gonzales Bohorquez, Martha Olindahttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesis10423235ORIGINALIpanaque_zc.pdfIpanaque_zc.pdfapplication/pdf2287251https://cybertesis.unmsm.edu.pe/bitstreams/04055d10-7a86-47d8-99bd-83eabb0d73a4/downloade9c292691f0098be660ac6b59ad15688MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/48199046-97cf-4c29-b547-ab21faae92a4/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIpanaque_zc.pdf.txtIpanaque_zc.pdf.txtExtracted texttext/plain79986https://cybertesis.unmsm.edu.pe/bitstreams/88fdca69-eab6-4cf0-9246-1cbfaa846cf6/download17d4af80ce263258d73868c2dd899b15MD53THUMBNAILIpanaque_zc.pdf.jpgIpanaque_zc.pdf.jpgGenerated Thumbnailimage/jpeg7848https://cybertesis.unmsm.edu.pe/bitstreams/65637eee-ea14-413b-bd81-474bd246492c/download341d807f18880cf10dfe97f6b1aa33fcMD5420.500.12672/17394oai:cybertesis.unmsm.edu.pe:20.500.12672/173942021-12-23 03:03:50.287https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).