Exportación Completada — 

Elementos finitos especiales aplicados a problemas elípticos de 2do orden con coeficientes no suaves

Descripción del Articulo

En el capitulo I hacemos un resumen de propiedades del análisis funcional indicando a los espacios de sobolev. En el capitulo II damos los principales resultados a utilizar, como lo son el Teorema de Lax-Milgram, el Teorema de Interpolación, así mismo el resultado de Ivo Babuska donde usamos la cond...

Descripción completa

Detalles Bibliográficos
Autor: Timoteo Sánchez, Martha Hilda
Formato: tesis de grado
Fecha de Publicación:2002
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/2905
Enlace del recurso:https://hdl.handle.net/20.500.12672/2905
Nivel de acceso:acceso abierto
Materia:Ecuaciones diferenciales elípticas - Soluciones numéricas
Interpolación
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:En el capitulo I hacemos un resumen de propiedades del análisis funcional indicando a los espacios de sobolev. En el capitulo II damos los principales resultados a utilizar, como lo son el Teorema de Lax-Milgram, el Teorema de Interpolación, así mismo el resultado de Ivo Babuska donde usamos la condición de inf - sup y el resultado de Bernstein. En el capitulo III realizamos la descripción matemática de los elementos finitos triangulares. En el capitulo IV se define el espacio HL (O) , hacemos un cambio de global de variables y aplicamos el teorema de Bemstein,encontrando que la solución global esta en HA (O) nHL (O) ,así mismo asumimos que existe un cambio loca1 de variables En el capitulo V estudiaremos tres métodos distintos de elementos finitos especiales.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).