Algoritmos proximales alternantes para desigualdades variacionales con restricciones lineales: aplicación a la descomposición de dominios para EDP's

Descripción del Articulo

Dados los siguientes espacios reales de Hilbert X , Y, Z, sean f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} funciones convexas cerradas y sean A : X → Z, B : Y → Z operadores lineales continuos. Consideremos el problema de minimización con restricción: (P) mín {f(x) + g(y) : A(x) = B(y)} Dada una sucesión (γn...

Descripción completa

Detalles Bibliográficos
Autor: García Morales, Piero Miguel
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/23962
Enlace del recurso:https://hdl.handle.net/20.500.12672/23962
Nivel de acceso:acceso abierto
Materia:Algoritmos
Restricciones lineales
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:Dados los siguientes espacios reales de Hilbert X , Y, Z, sean f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} funciones convexas cerradas y sean A : X → Z, B : Y → Z operadores lineales continuos. Consideremos el problema de minimización con restricción: (P) mín {f(x) + g(y) : A(x) = B(y)} Dada una sucesión (γn) el cual tiende hacia 0 como n → ∞, estudiaremos el siguiente algoritmo proximal alternante donde α y ν son parámetros positivos. Esto muestra que si la sucesión (γn) tiende moderadamente lento hacia 0, entonces las iteraciones de (A) convergen débilmente hacia la solución de (P). El estudio se extiende al contexto de operadores maximalmente monótonos, para los cuales se obtiene un resultado general de convergencia ergódica. Se presentan aplicaciones en el área de descomposición de dominios para EDP’s
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).