Estimación de las componentes de una serie de tiempo mediante Regresión Armónica Dinámica

Descripción del Articulo

En el estudio presentado a continuación, se buscó identificar y estimar las componentes no observables de la serie de tiempo temperatura superficial del mar frente a las costas de Tumbes mediante un modelo de regresión armónica dinámica (DHR) con espacio-estado estocástico”. Para realizar la estimac...

Descripción completa

Detalles Bibliográficos
Autor: Olivera Kalafatovich, Ruth Maly
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/16810
Enlace del recurso:https://hdl.handle.net/20.500.12672/16810
Nivel de acceso:acceso abierto
Materia:Análisis de series de tiempo
Análisis de regresión
https://purl.org/pe-repo/ocde/ford#1.01.03
https://purl.org/pe-repo/ocde/ford#1.05.11
Descripción
Sumario:En el estudio presentado a continuación, se buscó identificar y estimar las componentes no observables de la serie de tiempo temperatura superficial del mar frente a las costas de Tumbes mediante un modelo de regresión armónica dinámica (DHR) con espacio-estado estocástico”. Para realizar la estimación se utilizó el filtro de Kalman y algoritmos fijos de intervalo suavizado. Asimismo, se trabajó con un método de optimización en el dominio de frecuencias para estimar la varianza del ruido blanco y otros hiperparámetros. En los resultados se consiguió la identificación de las componentes no observadas de la serie y su representación a través de los modelos de regresión armónica. Como tal, se definió que el modelo Ar(13) Ma(1) es el modelo que más se ajusta a la serie de tiempo con la que se trabajó, ya que presenta valores mínimos de AKAIKE, Schwarz Criterion, Hannan Quinn y las autocorrelaciones de los residuos se encuentran dentro de las bandas de confianza.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).