Existencia de soluciones de una ecuación no local con el operador (P1(X), P2(X)) – Laplaciano y dependencia del gradiente

Descripción del Articulo

Aborda la existencia de soluciones débiles para el problema −M1(L1(u))div(|∇u |p1(x)−2 ∇u) −M2(L2(u))div(|∇u |p2(x)−2 ∇u)= f(x, u, ∇u ) | u |t(x)s(x) en u = 0 en ∂. Establece los resultados usando la teoría del grado para operadores del tipo (S+) en el contexto de las espacios de Sobolev con exponen...

Descripción completa

Detalles Bibliográficos
Autor: Trujillo Flores, Eduardo Valdemar
Formato: tesis doctoral
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/18369
Enlace del recurso:https://hdl.handle.net/20.500.12672/18369
Nivel de acceso:acceso abierto
Materia:Teoría de operadores
Análisis funcional
Espacios vectoriales
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Aborda la existencia de soluciones débiles para el problema −M1(L1(u))div(|∇u |p1(x)−2 ∇u) −M2(L2(u))div(|∇u |p2(x)−2 ∇u)= f(x, u, ∇u ) | u |t(x)s(x) en u = 0 en ∂. Establece los resultados usando la teoría del grado para operadores del tipo (S+) en el contexto de las espacios de Sobolev con exponente variable.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).