Caracterización del generador infinitesimal de un semigrupo de operadores de Lipschitz en espacios de Banach
Descripción del Articulo
This thesis work studies a special class of semigroups that satisfy the Lipschitz's_x000D_ condition. They are called semigroups of Lipschitz operators. Here, it is studied_x000D_ some properties of this class of semigroups and the important part is focused in the_x000D_ characterization of its...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2016 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | UNITRU-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:dspace.unitru.edu.pe:20.500.14414/8480 |
| Enlace del recurso: | https://hdl.handle.net/20.500.14414/8480 |
| Nivel de acceso: | acceso abierto |
| Materia: | Operador de Lipschitz, problema de Cauchy, condici on subtangencial |
| Sumario: | This thesis work studies a special class of semigroups that satisfy the Lipschitz's_x000D_ condition. They are called semigroups of Lipschitz operators. Here, it is studied_x000D_ some properties of this class of semigroups and the important part is focused in the_x000D_ characterization of its generator._x000D_ The problem of characterizing an operator A as a generator of this class of_x000D_ semigroups is closely related to the Cauchy problem for A :_x000D_ u0(t) = Au(t) for t 0 and u(0) = x_x000D_ where X is a Banach space, A : X ! X is a continuous operator and u : [0;1) ! X_x000D_ an unknown function which is di erentiable in R+. To success, the operator A it is_x000D_ assumed to be continuous from a closed subset D of a real Banach space X satisfying_x000D_ a subtangential condition and a dissipative condition and supported by a functional_x000D_ V that have interesting properties |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).