La continuidad entre espacios topológicos difusos

Descripción del Articulo

The continuity of a function de ned between classical topological spaces is a fundamental_x000D_ and very important for the development of mathematics and its applications_x000D_ topological concept. However, due to the complexity of the real world and the imprecision_x000D_ contained in many phenom...

Descripción completa

Detalles Bibliográficos
Autor: Alayo Yupanqui, Marco Antonio
Formato: tesis de grado
Fecha de Publicación:2013
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/8336
Enlace del recurso:https://hdl.handle.net/20.500.14414/8336
Nivel de acceso:acceso abierto
Materia:Espacios topológicos
id UNIT_9c2f5ed0961d5807163b43fa0ffdd363
oai_identifier_str oai:dspace.unitru.edu.pe:20.500.14414/8336
network_acronym_str UNIT
network_name_str UNITRU-Tesis
repository_id_str 4801
dc.title.es_PE.fl_str_mv La continuidad entre espacios topológicos difusos
title La continuidad entre espacios topológicos difusos
spellingShingle La continuidad entre espacios topológicos difusos
Alayo Yupanqui, Marco Antonio
Espacios topológicos
title_short La continuidad entre espacios topológicos difusos
title_full La continuidad entre espacios topológicos difusos
title_fullStr La continuidad entre espacios topológicos difusos
title_full_unstemmed La continuidad entre espacios topológicos difusos
title_sort La continuidad entre espacios topológicos difusos
author Alayo Yupanqui, Marco Antonio
author_facet Alayo Yupanqui, Marco Antonio
author_role author
dc.contributor.advisor.fl_str_mv RamIrez Lara, Guillermo
dc.contributor.author.fl_str_mv Alayo Yupanqui, Marco Antonio
dc.subject.es_PE.fl_str_mv Espacios topológicos
topic Espacios topológicos
description The continuity of a function de ned between classical topological spaces is a fundamental_x000D_ and very important for the development of mathematics and its applications_x000D_ topological concept. However, due to the complexity of the real world and the imprecision_x000D_ contained in many phenomena of nature these are described or better_x000D_ explained by fuzzy sets , which were introduced by the engineer L. Zadeh (1965) [7]._x000D_ The concept of fuzzy set generalizes the classical notion of set . A fuzzy set A in_x000D_ a universe X is associated with a function A : X ! [0; 1] that assigns to each_x000D_ element x of X a real number A(x) in [0; 1] called \ degree of membership " of the_x000D_ element x to the set A. A higher degree of membership re_x000D_ ects a sense of belonging_x000D_ to \ more " strong set A._x000D_ This work is based on the theory of fuzzy topological spaces introduced in 1968 by_x000D_ Chang [1] and is oriented to extend to the fuzzy context the concept of continuity_x000D_ and also a well-known theorem of general topology preserving compactness
publishDate 2013
dc.date.accessioned.none.fl_str_mv 8/4/2017 10:57
dc.date.available.none.fl_str_mv 8/4/2017 10:57
dc.date.issued.fl_str_mv 2013
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.14414/8336
url https://hdl.handle.net/20.500.14414/8336
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_PE.fl_str_mv Universidad Nacional de Trujillo
dc.source.es_PE.fl_str_mv Universidad Nacional de Trujillo
Repositorio institucional - UNITRU
dc.source.none.fl_str_mv reponame:UNITRU-Tesis
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str UNITRU-Tesis
collection UNITRU-Tesis
bitstream.url.fl_str_mv https://dspace.unitru.edu.pe/bitstreams/721d6e61-c4d1-47c7-8567-56917ca5ae9e/download
https://dspace.unitru.edu.pe/bitstreams/95fe1f9b-2dd5-45e8-a27d-a50f8fb123b2/download
bitstream.checksum.fl_str_mv e1fa7a5337a8a0cd60ec91d50e669c04
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNITRU
repository.mail.fl_str_mv repositorios@unitru.edu.pe
_version_ 1807290408865103872
spelling RamIrez Lara, GuillermoAlayo Yupanqui, Marco Antonio8/4/2017 10:578/4/2017 10:572013https://hdl.handle.net/20.500.14414/8336The continuity of a function de ned between classical topological spaces is a fundamental_x000D_ and very important for the development of mathematics and its applications_x000D_ topological concept. However, due to the complexity of the real world and the imprecision_x000D_ contained in many phenomena of nature these are described or better_x000D_ explained by fuzzy sets , which were introduced by the engineer L. Zadeh (1965) [7]._x000D_ The concept of fuzzy set generalizes the classical notion of set . A fuzzy set A in_x000D_ a universe X is associated with a function A : X ! [0; 1] that assigns to each_x000D_ element x of X a real number A(x) in [0; 1] called \ degree of membership " of the_x000D_ element x to the set A. A higher degree of membership re_x000D_ ects a sense of belonging_x000D_ to \ more " strong set A._x000D_ This work is based on the theory of fuzzy topological spaces introduced in 1968 by_x000D_ Chang [1] and is oriented to extend to the fuzzy context the concept of continuity_x000D_ and also a well-known theorem of general topology preserving compactnessLa continuidad de una funci on de nida entre espacios topol ogicos cl asicos es un_x000D_ concepto topol ogico fundamental y de gran importancia para el desarrollo de las_x000D_ matem aticas y de sus aplicaciones. Sin embargo, debido a la complejidad del mundo_x000D_ real y de la imprecisi on contenida en muchos fen omenos de la naturaleza estos se describen_x000D_ o explican mejor mediante los conjuntos difusos, los que fueron introducidos_x000D_ por el ingeniero L. Zadeh (1965) [7]._x000D_ El concepto de conjunto difuso generaliza el concepto de conjunto cl asico. Un conjunto_x000D_ difuso A en un universo X est a asociado a una funci on A : X ! [0; 1] que_x000D_ asigna a cada elemento x de X un n umero real A(x) en [0; 1] llamado \grado de_x000D_ pertenencia" del elemento x al conjunto A. Un mayor grado de pertenencia re_x000D_ eja_x000D_ un sentido de pertenencia \m as" fuerte al conjunto A._x000D_ Este trabajo se basa en la teor a de los espacios topol ogicos difusos introducidos en_x000D_ 1968 por Chang [1] y est a orientado a extender al contexto difuso el concepto de_x000D_ continuidad y tambi en un conocido teorema de la topolog a general que preserva la_x000D_ compacidadTesisspaUniversidad Nacional de Trujilloinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de TrujilloRepositorio institucional - UNITRUreponame:UNITRU-Tesisinstname:Universidad Nacional de Trujilloinstacron:UNITRUEspacios topológicosLa continuidad entre espacios topológicos difusosinfo:eu-repo/semantics/bachelorThesisSUNEDUTítulo ProfesionalLicenciado en MatemáticasMatemáticasUniversidad Nacional de Trujillo.Facultad de Ciencias Físicas y MatemáticasORIGINALALAYO YUPANQUI, Marco Antonio.pdfALAYO YUPANQUI, Marco Antonio.pdfapplication/pdf2569896https://dspace.unitru.edu.pe/bitstreams/721d6e61-c4d1-47c7-8567-56917ca5ae9e/downloade1fa7a5337a8a0cd60ec91d50e669c04MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace.unitru.edu.pe/bitstreams/95fe1f9b-2dd5-45e8-a27d-a50f8fb123b2/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14414/8336oai:dspace.unitru.edu.pe:20.500.14414/83362024-04-21 11:41:01.486http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://dspace.unitru.edu.peRepositorio Institucional - UNITRUrepositorios@unitru.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.932913
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).