Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT

Descripción del Articulo

Statistics today have become one of the most needed sciences and used in different_x000D_ fields of work because of its way of applying its various techniques for obtaining results_x000D_ and appropriate decision making. Within these techniques we have the binary logistic_x000D_ regression, a techni...

Descripción completa

Detalles Bibliográficos
Autor: Guevara Aguilar, Victor Hugo
Formato: tesis de grado
Fecha de Publicación:2017
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/10638
Enlace del recurso:https://hdl.handle.net/20.500.14414/10638
Nivel de acceso:acceso abierto
Materia:Redes neuronales, Regresión logística
id UNIT_6c7435be2b0334f06debb92f97395069
oai_identifier_str oai:dspace.unitru.edu.pe:20.500.14414/10638
network_acronym_str UNIT
network_name_str UNITRU-Tesis
repository_id_str 4801
dc.title.es_PE.fl_str_mv Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
title Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
spellingShingle Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
Guevara Aguilar, Victor Hugo
Redes neuronales, Regresión logística
title_short Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
title_full Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
title_fullStr Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
title_full_unstemmed Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
title_sort Redes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDT
author Guevara Aguilar, Victor Hugo
author_facet Guevara Aguilar, Victor Hugo
author_role author
dc.contributor.advisor.fl_str_mv Minchón Medina, Carlos Alberto
dc.contributor.author.fl_str_mv Guevara Aguilar, Victor Hugo
dc.subject.es_PE.fl_str_mv Redes neuronales, Regresión logística
topic Redes neuronales, Regresión logística
description Statistics today have become one of the most needed sciences and used in different_x000D_ fields of work because of its way of applying its various techniques for obtaining results_x000D_ and appropriate decision making. Within these techniques we have the binary logistic_x000D_ regression, a technique that allows to verify the causal relations of a variable when it is_x000D_ nominal, these techniques are applied to the health sciences allow us to analyze the_x000D_ results in explanatory and predictive terms for To evaluate mortality in hospitals, this_x000D_ technique and others are apparently not as efficient as the technique of neural networks,_x000D_ since this technique is not necessary to evaluate the assumptions of normality, since_x000D_ they are considered as statistics, nonparametric tests. That is why in previous studies it_x000D_ is stated that they are much better than the regression techniques, it is for this reason_x000D_ that the present study aims to determine which of the two techniques is better to predict_x000D_ hospital mortality in internal medicine of HRDT. Taking into account the variables that_x000D_ can influence this mortality, which are the sex, age and region of origin. In order to_x000D_ fulfill our objective, we obtained the database of the patients of the area of internal_x000D_ medicine of the HRDT; For the statistical analysis, the logistic regression technique and_x000D_ neural networks were used, And for these, the technique that best predicts is the_x000D_ technique of logistic regression, since, at the moment of observing the results in terms_x000D_ of the classification percentages, the difference is notorious
publishDate 2017
dc.date.accessioned.none.fl_str_mv 8/29/2018 12:39
dc.date.available.none.fl_str_mv 8/29/2018 12:39
dc.date.issued.fl_str_mv 2017
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.14414/10638
url https://hdl.handle.net/20.500.14414/10638
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_PE.fl_str_mv Universidad Nacional de Trujillo
dc.source.es_PE.fl_str_mv Universidad Nacional de Trujillo
Repositorio institucional - UNITRU
dc.source.none.fl_str_mv reponame:UNITRU-Tesis
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str UNITRU-Tesis
collection UNITRU-Tesis
bitstream.url.fl_str_mv https://dspace.unitru.edu.pe/bitstreams/7b9308a5-6399-4c73-9dc3-e954db39da72/download
https://dspace.unitru.edu.pe/bitstreams/784f1f46-530c-4d86-a2c3-0db58e561a4a/download
bitstream.checksum.fl_str_mv 4c82f3745a913d312a0100670d665a13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNITRU
repository.mail.fl_str_mv repositorios@unitru.edu.pe
_version_ 1807290385521704960
spelling Minchón Medina, Carlos AlbertoGuevara Aguilar, Victor Hugo8/29/2018 12:398/29/2018 12:392017https://hdl.handle.net/20.500.14414/10638Statistics today have become one of the most needed sciences and used in different_x000D_ fields of work because of its way of applying its various techniques for obtaining results_x000D_ and appropriate decision making. Within these techniques we have the binary logistic_x000D_ regression, a technique that allows to verify the causal relations of a variable when it is_x000D_ nominal, these techniques are applied to the health sciences allow us to analyze the_x000D_ results in explanatory and predictive terms for To evaluate mortality in hospitals, this_x000D_ technique and others are apparently not as efficient as the technique of neural networks,_x000D_ since this technique is not necessary to evaluate the assumptions of normality, since_x000D_ they are considered as statistics, nonparametric tests. That is why in previous studies it_x000D_ is stated that they are much better than the regression techniques, it is for this reason_x000D_ that the present study aims to determine which of the two techniques is better to predict_x000D_ hospital mortality in internal medicine of HRDT. Taking into account the variables that_x000D_ can influence this mortality, which are the sex, age and region of origin. In order to_x000D_ fulfill our objective, we obtained the database of the patients of the area of internal_x000D_ medicine of the HRDT; For the statistical analysis, the logistic regression technique and_x000D_ neural networks were used, And for these, the technique that best predicts is the_x000D_ technique of logistic regression, since, at the moment of observing the results in terms_x000D_ of the classification percentages, the difference is notoriousLa estadística hoy en día se ha convertido en una de las ciencias más necesarias y_x000D_ utilizadas en distintos campos laborales debido a su manera de aplicar sus diversas_x000D_ técnicas para la obtención de resultados y toma de decisiones apropiadas. Dentro de_x000D_ estas técnicas tenemos a las de regresión logística binaria, técnica que permiten_x000D_ comprobar las relaciones causales de una variable cuando esta es nominal, estas_x000D_ técnicas son aplicados a las ciencias de la salud nos permiten el análisis de los_x000D_ resultados en términos explicativos y predictivos para evaluar la mortalidad en_x000D_ hospitales, esta técnica y otras más al parecer están resultando no tan eficientes_x000D_ como la técnica de redes neuronales, ya que esta técnica no es necesaria evaluar los_x000D_ supuestos de normalidad, puesto que son consideradas como en estadística, pruebas_x000D_ no paramétricas.es por eso que en trabajos realizados anteriormente se afirma que_x000D_ son mucho mejor que las técnicas de regresión, es por tal motivo que el presente_x000D_ estudio tiene como finalidad determinar cuál de las dos técnicas es mejor para_x000D_ predecir la mortalidad hospitalaria en medicina interna del HRDT. Tomando en_x000D_ cuenta las variables que pueden influir en dicha mortalidad, las cuales son el sexo,_x000D_ la edad y la región de procedencia. Para cumplir con nuestro objetivo se obtuvo la_x000D_ base de datos de los pacientes del área de medicina interna del HRDT; para el_x000D_ análisis estadístico se utilizó la técnica de regresión logística y redes neuronales,_x000D_ encontrándose para estas, que la técnica que mejor pronostica es la técnica de_x000D_ regresión logística, ya que, al momento de observar los resultados en cuanto a los_x000D_ porcentajes de clasificación, es notoria la diferenciaTesisspaUniversidad Nacional de Trujilloinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de TrujilloRepositorio institucional - UNITRUreponame:UNITRU-Tesisinstname:Universidad Nacional de Trujilloinstacron:UNITRURedes neuronales, Regresión logísticaRedes neuronales y regresión logística técnicas predictivas de la mortalidad en medicina interna del HRDTinfo:eu-repo/semantics/bachelorThesisSUNEDUTítulo ProfesionalIngeniero EstadísticoEstadísticaUniversidad Nacional de Trujillo.Facultad de Ciencias Físicas y MatemáticasORIGINALGUEVARA AGUILAR, Victor Hugo.pdfGUEVARA AGUILAR, Victor Hugo.pdfapplication/pdf3111734https://dspace.unitru.edu.pe/bitstreams/7b9308a5-6399-4c73-9dc3-e954db39da72/download4c82f3745a913d312a0100670d665a13MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace.unitru.edu.pe/bitstreams/784f1f46-530c-4d86-a2c3-0db58e561a4a/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14414/10638oai:dspace.unitru.edu.pe:20.500.14414/106382024-04-21 11:41:02.044http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://dspace.unitru.edu.peRepositorio Institucional - UNITRUrepositorios@unitru.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 14.000597
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).