Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon

Descripción del Articulo

The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hy...

Descripción completa

Detalles Bibliográficos
Autores: Gianmarco Goycochea Casas, Duberlí Geomar Elera Gonzáles, Juan Rodrigo Baselly Villanueva, Leonardo Pereira Fardin, Hélio Garcia Leite
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Autónoma de Chota
Repositorio:UNACH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unach.edu.pe:20.500.14142/360
Enlace del recurso:http://hdl.handle.net/20.500.14142/360
https://doi.org/10.3390/f13050697
Nivel de acceso:acceso abierto
Materia:deep learning
artificial neural network
total height
forest management
http://purl.org/pe-repo/ocde/ford#4.00.00
id UNCH_9fd26b88ba24f8da72d15a234a7d4c3c
oai_identifier_str oai:repositorio.unach.edu.pe:20.500.14142/360
network_acronym_str UNCH
network_name_str UNACH-Institucional
repository_id_str 4826
dc.title.es_ES.fl_str_mv Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
title Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
spellingShingle Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
Gianmarco Goycochea Casas
deep learning
artificial neural network
total height
forest management
http://purl.org/pe-repo/ocde/ford#4.00.00
title_short Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
title_full Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
title_fullStr Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
title_full_unstemmed Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
title_sort Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
author Gianmarco Goycochea Casas
author_facet Gianmarco Goycochea Casas
Duberlí Geomar Elera Gonzáles
Juan Rodrigo Baselly Villanueva
Leonardo Pereira Fardin
Hélio Garcia Leite
author_role author
author2 Duberlí Geomar Elera Gonzáles
Juan Rodrigo Baselly Villanueva
Leonardo Pereira Fardin
Hélio Garcia Leite
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Gianmarco Goycochea Casas
Duberlí Geomar Elera Gonzáles
Juan Rodrigo Baselly Villanueva
Leonardo Pereira Fardin
Hélio Garcia Leite
dc.subject.es_ES.fl_str_mv deep learning
artificial neural network
total height
forest management
topic deep learning
artificial neural network
total height
forest management
http://purl.org/pe-repo/ocde/ford#4.00.00
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#4.00.00
description The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-15T22:38:41Z
dc.date.available.none.fl_str_mv 2023-03-15T22:38:41Z
dc.date.issued.fl_str_mv 2022-04-22
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14142/360
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.3390/f13050697
url http://hdl.handle.net/20.500.14142/360
https://doi.org/10.3390/f13050697
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv Forests
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv MDPI
dc.publisher.country.es_ES.fl_str_mv BZ
dc.source.es_ES.fl_str_mv Forests 2022, 13, 697
dc.source.none.fl_str_mv reponame:UNACH-Institucional
instname:Universidad Nacional Autónoma de Chota
instacron:UNACH
instname_str Universidad Nacional Autónoma de Chota
instacron_str UNACH
institution UNACH
reponame_str UNACH-Institucional
collection UNACH-Institucional
bitstream.url.fl_str_mv https://repositorio.unach.edu.pe/bitstreams/10ce8408-2c57-468f-b63c-6bf47a17606d/download
https://repositorio.unach.edu.pe/bitstreams/95608607-2096-4c0f-93cf-6287d04ad1df/download
https://repositorio.unach.edu.pe/bitstreams/4a070059-f25f-408c-b7bd-ee8b8c822321/download
bitstream.checksum.fl_str_mv df808e77c92c66bad1e84d03594553f8
8a4605be74aa9ea9d79846c1fba20a33
400996a82dfebfb6f49860addded2c4b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNACH
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1834655621752815616
spelling Gianmarco Goycochea CasasDuberlí Geomar Elera GonzálesJuan Rodrigo Baselly VillanuevaLeonardo Pereira FardinHélio Garcia Leite2023-03-15T22:38:41Z2023-03-15T22:38:41Z2022-04-22http://hdl.handle.net/20.500.14142/360https://doi.org/10.3390/f13050697The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.application/pdfengMDPIBZForestsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Forests 2022, 13, 697reponame:UNACH-Institucionalinstname:Universidad Nacional Autónoma de Chotainstacron:UNACHdeep learningartificial neural networktotal heightforest managementhttp://purl.org/pe-repo/ocde/ford#4.00.00Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazoninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALArticulo02_Forests_DuberliG_EleraG.pdfArticulo02_Forests_DuberliG_EleraG.pdfapplication/pdf485292https://repositorio.unach.edu.pe/bitstreams/10ce8408-2c57-468f-b63c-6bf47a17606d/downloaddf808e77c92c66bad1e84d03594553f8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unach.edu.pe/bitstreams/95608607-2096-4c0f-93cf-6287d04ad1df/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILportada 360.pngportada 360.pngimage/png149640https://repositorio.unach.edu.pe/bitstreams/4a070059-f25f-408c-b7bd-ee8b8c822321/download400996a82dfebfb6f49860addded2c4bMD5320.500.14142/360oai:repositorio.unach.edu.pe:20.500.14142/3602023-03-15 23:41:36.076https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unach.edu.peRepositorio UNACHdspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.968414
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).