In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging

Descripción del Articulo

Magnetic Particle Imaging (MPI) is a new molecular imaging technology capable of unambiguous and quantitative tomographic imaging of the distribution of superparamagnetic nanoparticle tracers in vivo. While the term MPI may be confused with that for Magnetic Resonance Imaging (MRI), the two rely on...

Descripción completa

Detalles Bibliográficos
Autor: Rinaldi-Ramos, Carlos M.
Formato: informe técnico
Fecha de Publicación:2021
Institución:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
Repositorio:UNAT - Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unat.edu.pe:UNAT/84
Enlace del recurso:https://repositorio.unat.edu.pe/handle/UNAT/84
Nivel de acceso:acceso abierto
Materia:Nanotechnology
Magnetic nanoparticles
Magnetic particle imaging
https://purl.org/pe-repo/ocde/ford#2.10.00
id UNAT_ec2f054cb3d44da902bab800ee7eafb7
oai_identifier_str oai:repositorio.unat.edu.pe:UNAT/84
network_acronym_str UNAT
network_name_str UNAT - Institucional
repository_id_str
spelling In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle ImagingRinaldi-Ramos, Carlos M.NanotechnologyMagnetic nanoparticlesMagnetic particle imaginghttps://purl.org/pe-repo/ocde/ford#2.10.00Magnetic Particle Imaging (MPI) is a new molecular imaging technology capable of unambiguous and quantitative tomographic imaging of the distribution of superparamagnetic nanoparticle tracers in vivo. While the term MPI may be confused with that for Magnetic Resonance Imaging (MRI), the two rely on distinct physics. In MPI, a tomographic image of the distribution of superparamagnetic nanoparticles is constructed by scanning a so-called field free region (FFR) through the domain of interest. Outside the FFR there is a quasi-static bias field strong enough to saturate the magnetic moments of the nanoparticles. But inside the FFR the dipole moments of the nanoparticles are able to respond to a superimposed alternating excitation field. The signal used to construct an image in MPI arises due to the non-linear dynamic magnetization response of the nanoparticle dipole moments to the excitation field inside the FFR. At the field amplitudes and frequencies used in MPI there is no appreciable attenuation in field or signal strength in tissue. Further, while there are magnetic species in the body (e.g., ferritin), they do not contribute an appreciable signal for MPI, allowing for unambiguous imaging of the distribution of one of the superparamagnetic nanoparticle tracers. In this talk I will explain the physics of image generation in MPI, discuss work to understand how imaging performance relates to physical and magnetic properties of the nanoparticles, and discuss our work developing tracers and using MPI to quantify biodistribution of iron oxide nanoparticles in vivo, in the context of tracking nanoparticles and cell therapies.Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo - UNAT2022-04-19T23:38:30Z2022-04-19T23:38:30Z2021-12-15info:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://repositorio.unat.edu.pe/handle/UNAT/84enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/reponame:UNAT - Institucionalinstname:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morilloinstacron:UNAToai:repositorio.unat.edu.pe:UNAT/842022-04-19T23:38:30Z
dc.title.none.fl_str_mv In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
title In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
spellingShingle In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
Rinaldi-Ramos, Carlos M.
Nanotechnology
Magnetic nanoparticles
Magnetic particle imaging
https://purl.org/pe-repo/ocde/ford#2.10.00
title_short In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
title_full In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
title_fullStr In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
title_full_unstemmed In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
title_sort In Vivo Quantitative Imaging of Nanoparticles and Cells Using Magnetic Particle Imaging
dc.creator.none.fl_str_mv Rinaldi-Ramos, Carlos M.
author Rinaldi-Ramos, Carlos M.
author_facet Rinaldi-Ramos, Carlos M.
author_role author
dc.subject.none.fl_str_mv Nanotechnology
Magnetic nanoparticles
Magnetic particle imaging
https://purl.org/pe-repo/ocde/ford#2.10.00
topic Nanotechnology
Magnetic nanoparticles
Magnetic particle imaging
https://purl.org/pe-repo/ocde/ford#2.10.00
description Magnetic Particle Imaging (MPI) is a new molecular imaging technology capable of unambiguous and quantitative tomographic imaging of the distribution of superparamagnetic nanoparticle tracers in vivo. While the term MPI may be confused with that for Magnetic Resonance Imaging (MRI), the two rely on distinct physics. In MPI, a tomographic image of the distribution of superparamagnetic nanoparticles is constructed by scanning a so-called field free region (FFR) through the domain of interest. Outside the FFR there is a quasi-static bias field strong enough to saturate the magnetic moments of the nanoparticles. But inside the FFR the dipole moments of the nanoparticles are able to respond to a superimposed alternating excitation field. The signal used to construct an image in MPI arises due to the non-linear dynamic magnetization response of the nanoparticle dipole moments to the excitation field inside the FFR. At the field amplitudes and frequencies used in MPI there is no appreciable attenuation in field or signal strength in tissue. Further, while there are magnetic species in the body (e.g., ferritin), they do not contribute an appreciable signal for MPI, allowing for unambiguous imaging of the distribution of one of the superparamagnetic nanoparticle tracers. In this talk I will explain the physics of image generation in MPI, discuss work to understand how imaging performance relates to physical and magnetic properties of the nanoparticles, and discuss our work developing tracers and using MPI to quantify biodistribution of iron oxide nanoparticles in vivo, in the context of tracking nanoparticles and cell therapies.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15
2022-04-19T23:38:30Z
2022-04-19T23:38:30Z
dc.type.none.fl_str_mv info:eu-repo/semantics/report
info:eu-repo/semantics/publishedVersion
format report
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.unat.edu.pe/handle/UNAT/84
url https://repositorio.unat.edu.pe/handle/UNAT/84
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo - UNAT
publisher.none.fl_str_mv Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo - UNAT
dc.source.none.fl_str_mv reponame:UNAT - Institucional
instname:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
instacron:UNAT
instname_str Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
instacron_str UNAT
institution UNAT
reponame_str UNAT - Institucional
collection UNAT - Institucional
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1786014149262704640
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).