Exportación Completada — 

Modelo para la predicción de la radiación solar a partir de redes neuronales artificiales en la ciudad de Nauta

Descripción del Articulo

The present study addresses the problem of solar radiation prediction in the city of Nauta, considering its importance for applications in renewable energy and climate management. The main objective was to develop a predictive model based on LSTM artificial neural networks and the RandomForestRegres...

Descripción completa

Detalles Bibliográficos
Autores: Riera Gutierrez, Galileo, Campos Crispin, Lizth Yulisa
Formato: tesis de maestría
Fecha de Publicación:2025
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/11508
Enlace del recurso:https://hdl.handle.net/20.500.12737/11508
Nivel de acceso:acceso abierto
Materia:X
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The present study addresses the problem of solar radiation prediction in the city of Nauta, considering its importance for applications in renewable energy and climate management. The main objective was to develop a predictive model based on LSTM artificial neural networks and the RandomForestRegressor machine learning algorithm, seeking to improve accuracy by reducing the root mean square error (RMSE) and increasing the correlation coefficient (R). The methodology included the collection of historical meteorological data from SENAMHI, which were preprocessed, normalized and segmented into training, validation and test sets. The models were configured and trained using machine learning techniques and recurrent neural networks. The results showed that the LSTM model obtained an RMSE of 25.94 and an R of 0.764 during training, while the RandomForestRegressor achieved an RMSE of 27.25 and an R of 0.740. However, when using untrained data, the RandomForestRegressor showed a higher generalization capacity with an RMSE of 27.38 compared to 30.04 for the LSTM. It is concluded that both models are effective for predicting solar radiation, highlighting the robustness and adaptability of the RandomForestRegressor and the ability of the LSTM to capture complex temporal patterns. It is recommended to expand the database and adjust hyperparameters to improve the performance of the model in different geographical environments.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).