Predicción de consumo del servicio de agua potable basado en métodos de Machine Learning en la ciudad de Iquitos

Descripción del Articulo

The study developed and evaluated a prediction model for drinking water consumption in the city of Iquitos, using a sample of size 288 obtained from historical data from SENAMHI, INEI, and SEDALORETO. A quantitative, applied, and non-experimental correlational approach was used to build and test an...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Coquinche, Jason Robie Jhunior, Pinedo Flores, Harold
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/9935
Enlace del recurso:https://hdl.handle.net/20.500.12737/9935
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Informática)
Aprendizaje automático
Modelos de simulación
Predicción
Consumo de agua
Agua potable
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The study developed and evaluated a prediction model for drinking water consumption in the city of Iquitos, using a sample of size 288 obtained from historical data from SENAMHI, INEI, and SEDALORETO. A quantitative, applied, and non-experimental correlational approach was used to build and test an Artificial Neural Network (ANN) model, comparing model results with historical consumption data. The accuracy of the model was evaluated using algorithms and statistical models in MATLAB, using indicators such as Mean Squared Error (MSE), Correlation Coefficient (R), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2). The results showed that the RNA model presented a high performance in terms of precision in the training, validation and test set, with MSEs of 99736607.27x10-8, 283364279.46x10-8 and 373108841.22x10-8, and correlation coefficients (R) of 0.996463, 0.986462 and 0.984320, respectively. The prediction model for drinking water consumption in the city of Iquitos showed a MAPE of 1.72%, a correlation of 0.909 and a coefficient of determination (r2) of 0.826, which suggests a strong positive relationship between the variables and a capacity acceptable value of the model to accurately predict drinking water consumption. In conclusion, the Machine Learning model used proved to be effective in predicting drinking water consumption in the city of Iquitos, which can improve efficiency in resource management and guarantee an adequate supply of drinking water to the population.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).