Sistema informático para analítica de datos con Python para la proyección de las redes de distribución de Electro Oriente S.A. 2024

Descripción del Articulo

Population growth implies the appearance of new human settlements and consequently, for Electro Oriente (ELOR), the need to provide electrical services appears. ELOR senior management is urged to have the estimation of the electrical network for decision making, to prevent and address the needs that...

Descripción completa

Detalles Bibliográficos
Autores: Vela Lomas, Walner Rafael, Gomez Isuiza, Tairon Willer
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/12182
Enlace del recurso:https://hdl.handle.net/20.500.12737/12182
Nivel de acceso:acceso abierto
Materia:Sistemas informáticos
Análisis de datos
Python (Lenguaje de programación)
Proyección
Redes eléctricas
Empresas eléctricas
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Population growth implies the appearance of new human settlements and consequently, for Electro Oriente (ELOR), the need to provide electrical services appears. ELOR senior management is urged to have the estimation of the electrical network for decision making, to prevent and address the needs that arise in these areas within the province of Maynas. In this sense, the objective is to determine if the computer system for data analysis using Python allows to project the expansion of ELOR networks in terms of cable length, power and costs 2024; it is expected that the implementation will achieve the projection, this implies finding the equations of the curve that best fits the dispersion of points in the Cartesian plane. The research is applied, longitudinal and retrospective. The ELOR database will be used from 1970 to 2024. The chronological series design is used to evaluate the evolution of the electrical network as a function of time. The equations as a function of time are: for the cable length = 9,627 ∗10−1420,165, for the power = 330,307−639617,726 ⁄ and for the cost = 2,012 ∗10−640,082, each with a high correlation coefficient. With a significance level of 5%, it is concluded that the IT solution, with data analytics, will allow to project the expansion of the ELOR networks in terms of cable length, power and cost 2024.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).