Exportación Completada — 

Clasificación de especies de árboles forestales amazónicos a partir de hojas utilizando un modelo híbrido de aprendizaje automático supervisado

Descripción del Articulo

The loss of biodiversity and criminal acts as a consequence of the lack of monitoring and control are closely linked to the scarce technology and limited supply of tools that support the activities of identification of the species of biodiversity present in the territory, mainly there are difficulti...

Descripción completa

Detalles Bibliográficos
Autor: Cardenas Vigo, Rodolfo
Formato: tesis de maestría
Fecha de Publicación:2024
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/10396
Enlace del recurso:https://hdl.handle.net/20.500.12737/10396
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Algoritmos computacionales
Clasificación
Árboles forestales
Hojas
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The loss of biodiversity and criminal acts as a consequence of the lack of monitoring and control are closely linked to the scarce technology and limited supply of tools that support the activities of identification of the species of biodiversity present in the territory, mainly there are difficulties for the identification and classification of species of forest trees in the Amazon. For this reason, the objective of this research has been the development and implementation of a solution based on the use of Artificial Intelligence in the research line of image recognition, which has resulted in a hybrid model of supervised machine learning, which facilitates the classification of up to 40 species of Amazonian forest trees in Peru. A comparison has been made between different models of convolutional neural network (CNN) algorithms and classification algorithms such as vector machine (SVM) and logistic regression (LR), based on a set of processed leaf images of 40 species of trees of forest importance. The most outstanding results point to the hybrid model using the CNN MobileNet model and the Logistic Regression (LR) algorithm as the best solution, concluding that this model achieves high rates in the main metrics such as Accuracy, Sensitivity, Specificity and F1-score, being its average model performance 99%, which demonstrates its efficiency for this classification case, which uses leaf images to identify Amazonian forest tree species.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).