Reconocimiento e identificación de patrones chartistas para la toma de decisiones de compra y venta en el mercado de Forex
Descripción del Articulo
El propósito fue mejorar el análisis técnico para la toma de decisiones de compra o venta para inversores principiantes en forex a través de un sistema de reconocimiento e identificación de patrones chartistas. Definido el conjunto de datos con diferentes patrones chartistas, se realizó la configura...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana Unión |
| Repositorio: | UPEU-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.upeu.edu.pe:20.500.12840/7239 |
| Enlace del recurso: | http://repositorio.upeu.edu.pe/handle/20.500.12840/7239 |
| Nivel de acceso: | acceso embargado |
| Materia: | Patrones chartistas Mercado forex http://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | El propósito fue mejorar el análisis técnico para la toma de decisiones de compra o venta para inversores principiantes en forex a través de un sistema de reconocimiento e identificación de patrones chartistas. Definido el conjunto de datos con diferentes patrones chartistas, se realizó la configuración necesaria para el entrenamiento o procesamiento de los datos con red neuronal en este caso la convolutional neural network (CNN). Los resultados fueron que los valores de Accuracy obtenidos del entrenamiento (Train) y validación (Val), donde observamos que la media de 150 épocas el accuracy del Train es de 0,7846% y del Val es igual a 0,7983%, dando un mejor porcentaje de asertividad. El modelo con los datos de Test se obtuvo una media del accuracy con una exactitud del 88.4% en el reconocimiento e identificación de patrones chartistas para la toma de decisiones de compra y venta en el mercado de Forex. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).