Exportación Completada — 

Aplicación de aprendizaje federado para reconocimiento de actividades humanas

Descripción del Articulo

En la presente tesis se exploró una nueva metodología para el entrenamiento de modelos teniendo en cuenta la preservación de privacidad por medio de entrenamientos locales, en contraste con el método tradicional centralizado. En el capítulo 1 se detalla la definición y aplicaciones de Reconocimiento...

Descripción completa

Detalles Bibliográficos
Autor: Sánchez Farías, Sergio Alexander
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad de Piura
Repositorio:UDEP-Institucional
Lenguaje:español
OAI Identifier:oai:pirhua.udep.edu.pe:11042/6345
Enlace del recurso:https://hdl.handle.net/11042/6345
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computadores)
Aprendizaje automático (Inteligencia artificial) -- Investigaciones
006.31
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:En la presente tesis se exploró una nueva metodología para el entrenamiento de modelos teniendo en cuenta la preservación de privacidad por medio de entrenamientos locales, en contraste con el método tradicional centralizado. En el capítulo 1 se detalla la definición y aplicaciones de Reconocimiento de Actividad Humana (HAR, por sus siglas en inglés) en ámbitos como Entornos Inteligentes, Internet de las Cosas (IoT) y Computación consciente del contexto. Por otra parte, definimos Aprendizaje Federado, los nodos, su categorización, desafíos actuales, los principales métodos de agregación, las diferencias con el aprendizaje centralizado y aplicaciones actuales. Por último, definimos la problemática enfocada en la privacidad de datos y los objetivos de la investigación. En el capítulo 2 realizamos un análisis descriptivo de los conjuntos de datos NoFed y MHeatlh. Luego, describimos la implementación de Aprendizaje Federado con las consideraciones asumidas. Además, mencionamos las métricas utilizadas para evaluar el rendimiento Tradicional vs Federado. Finalmente, en el capítulo 3 se brindan los resultados del Modelo Tradicional y Federado para ambos conjunto de datos teniendo en cuenta diferentes niveles de comunicación.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).