Machine Learning utilizando el Método Boosting de ensemble para la deserción estudiantil en EBR
Descripción del Articulo
La finalidad del presente proyecto fue determinar la mejora del modelo predictivo de machine learning utilizando el método Boosting en la predicción de la deserción estudiantil en EBR (Educación Básica Regular), como metodología se utilizó KDD (Descubrimiento de conocimiento en base de datos) y para...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad Cesar Vallejo |
Repositorio: | UCV-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ucv.edu.pe:20.500.12692/133709 |
Enlace del recurso: | https://hdl.handle.net/20.500.12692/133709 |
Nivel de acceso: | acceso abierto |
Materia: | Precisión Exactitud Sensibilidad https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | La finalidad del presente proyecto fue determinar la mejora del modelo predictivo de machine learning utilizando el método Boosting en la predicción de la deserción estudiantil en EBR (Educación Básica Regular), como metodología se utilizó KDD (Descubrimiento de conocimiento en base de datos) y para la medición se hizo el uso de tres indicadores: Precisión, Sensibilidad y Exactitud. Como resultado final, obtuvimos que el modelo predictivo que hace uso de varios logaritmos de aprendizaje sí mejora la predicción en la deserción estudiantil en la educación mencionada anteriormente. Finalmente, se concluyó que, de los algoritmos empleados, CATBOOST es el que nos brinda unos niveles más altos en lo que respecta a los indicadores seleccionados. Es así como tenemos un 97% en exactitud, 70% en precisión y 74% en sensibilidad. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).