Deep Learning para la detección de fisuras y grietas en las estructuras de concreto de entidades públicas en Piura
Descripción del Articulo
En la actualidad las estructuras de concreto tienden a fisurarse y agrietarse por diferentes agentes climáticos y variaciones de temperatura o humedad lo que conlleva a poner en duda su funcionalidad y durabilidad de la estructura. La presente investigación buscó identificar las fisuras y grietas us...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad Cesar Vallejo |
Repositorio: | UCV-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ucv.edu.pe:20.500.12692/140623 |
Enlace del recurso: | https://hdl.handle.net/20.500.12692/140623 |
Nivel de acceso: | acceso abierto |
Materia: | Deep Learning Inteligencia artificial Estructura https://purl.org/pe-repo/ocde/ford#5.05.01 |
Sumario: | En la actualidad las estructuras de concreto tienden a fisurarse y agrietarse por diferentes agentes climáticos y variaciones de temperatura o humedad lo que conlleva a poner en duda su funcionalidad y durabilidad de la estructura. La presente investigación buscó identificar las fisuras y grietas usando Deep Learning en las estructuras de concreto de entidades públicas en Piura. Por ello, se utilizó un enfoque cuantitativo de carácter descriptivo, de diseño no experimental donde se realizó una inspección visual con la finalidad de recabar la información para su entrenamiento, prueba y validación usando roboflow; se recolectó a través de la ficha de inspección de datos. El estudio se desarrolló en la Municipalidad Provincial de Piura, capturando 500 fotografías del primer al décimo piso, también el sótano a través de un celular inteligente, analizando 100 imágenes validadas. Por consiguiente, los resultados obtenidos indican que, en la estructura de la parte interna de la Entidad Pública se logró identificar 58 fisuras, más leves que graves y 43 grietas moderadas. Además, se realizó una propuesta de reparación de fisuras y grietas leves y moderadas mediante el ACI224. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).