An automatic emotion recognition system that uses the human body posture

Descripción del Articulo

Non-verbal communication is very present in our lives, but it can be interpreted in different ways according to many factors. With nonverbal gestures people can express explicit and implicit messages, which makes them important to understand. Computer vision methods for recognising body gestures and...

Descripción completa

Detalles Bibliográficos
Autor: Heredia Parillo, Juanpablo Andrew
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16702
Enlace del recurso:https://hdl.handle.net/20.500.12590/16702
Nivel de acceso:acceso abierto
Materia:Emotion recognition
Posture Classification
Meta-learning
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_d2e4ce152583219a5b70122b7b7aff90
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/16702
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv An automatic emotion recognition system that uses the human body posture
title An automatic emotion recognition system that uses the human body posture
spellingShingle An automatic emotion recognition system that uses the human body posture
Heredia Parillo, Juanpablo Andrew
Emotion recognition
Posture Classification
Meta-learning
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short An automatic emotion recognition system that uses the human body posture
title_full An automatic emotion recognition system that uses the human body posture
title_fullStr An automatic emotion recognition system that uses the human body posture
title_full_unstemmed An automatic emotion recognition system that uses the human body posture
title_sort An automatic emotion recognition system that uses the human body posture
author Heredia Parillo, Juanpablo Andrew
author_facet Heredia Parillo, Juanpablo Andrew
author_role author
dc.contributor.advisor.fl_str_mv Ticona Herrera, Regina Paola
dc.contributor.author.fl_str_mv Heredia Parillo, Juanpablo Andrew
dc.subject.es_PE.fl_str_mv Emotion recognition
Posture Classification
Meta-learning
topic Emotion recognition
Posture Classification
Meta-learning
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Non-verbal communication is very present in our lives, but it can be interpreted in different ways according to many factors. With nonverbal gestures people can express explicit and implicit messages, which makes them important to understand. Computer vision methods for recognising body gestures and machine learning classification methods offer an opportunity to understand what people express with their bodies. This research work focuses on the emotions expressed by body gestures, particularly the posture. Thus, an automatic emotion recognition system from images is proposed, which uses a graph convolutional neural network to perform the classification. Generally, deep learning approach needs many training samples, but these are difficult to obtain for posture emotion recognition, thus, the proposed model trains under a meta-learning algorithm based on the “agnostic model”, which allows training with few examples. Only the meta-learning algorithm was tested, which demonstrated the adaptability and expands the applicability of the graph convolutional neural networks.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-05T01:23:00Z
dc.date.available.none.fl_str_mv 2021-04-05T01:23:00Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format bachelorThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1073106
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/16702
identifier_str_mv 1073106
url https://hdl.handle.net/20.500.12590/16702
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/4a939fbe-5fc6-4717-94e6-04128a2eb0bd/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a6ddd0e8-b3fb-46f6-b8a8-ad8a76897226/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/6e410af2-490a-4b0d-92fe-658542a1fc0a/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/89a4154d-366f-44e3-8b38-2efcd7d81090/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b88bfd7a3abb70124793e5e23a67b418
b5fbad440a0ccaca05daeaa355ad714c
14a88276dfe1b915f15e5e51eb83bbfb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053035063607296
spelling Ticona Herrera, Regina PaolaHeredia Parillo, Juanpablo Andrew2021-04-05T01:23:00Z2021-04-05T01:23:00Z20211073106https://hdl.handle.net/20.500.12590/16702Non-verbal communication is very present in our lives, but it can be interpreted in different ways according to many factors. With nonverbal gestures people can express explicit and implicit messages, which makes them important to understand. Computer vision methods for recognising body gestures and machine learning classification methods offer an opportunity to understand what people express with their bodies. This research work focuses on the emotions expressed by body gestures, particularly the posture. Thus, an automatic emotion recognition system from images is proposed, which uses a graph convolutional neural network to perform the classification. Generally, deep learning approach needs many training samples, but these are difficult to obtain for posture emotion recognition, thus, the proposed model trains under a meta-learning algorithm based on the “agnostic model”, which allows training with few examples. Only the meta-learning algorithm was tested, which demonstrated the adaptability and expands the applicability of the graph convolutional neural networks. Trabajo de investigaciónapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPEmotion recognition Posture ClassificationMeta-learninghttps://purl.org/pe-repo/ocde/ford#1.02.01An automatic emotion recognition system that uses the human body postureinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionSUNEDUBachiller en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónBachillerCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación75151804https://orcid.org/0000-0002-2605-571840207170https://purl.org/pe-repo/renati/type#trabajoDeInvestigacionhttps://purl.org/pe-repo/renati/level#bachiller611016Rensso Victor Hugo Mora ColqueAna Maria Cuadros ValdiviaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/4a939fbe-5fc6-4717-94e6-04128a2eb0bd/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTHEREDIA_PARILLO_JUA_AUT.pdf.txtHEREDIA_PARILLO_JUA_AUT.pdf.txtExtracted texttext/plain100241https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a6ddd0e8-b3fb-46f6-b8a8-ad8a76897226/downloadb88bfd7a3abb70124793e5e23a67b418MD57ORIGINALHEREDIA_PARILLO_JUA_AUT.pdfapplication/pdf3704602https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/6e410af2-490a-4b0d-92fe-658542a1fc0a/downloadb5fbad440a0ccaca05daeaa355ad714cMD56THUMBNAILHEREDIA_PARILLO_JUA_AUT.pdf.jpgHEREDIA_PARILLO_JUA_AUT.pdf.jpgGenerated Thumbnailimage/jpeg3359https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/89a4154d-366f-44e3-8b38-2efcd7d81090/download14a88276dfe1b915f15e5e51eb83bbfbMD5520.500.12590/16702oai:repositorio.ucsp.edu.pe:20.500.12590/167022023-11-02 15:56:20.737https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.446193
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).