Unsupervised anomaly detection in 2D radiographs using generative models
Descripción del Articulo
We present a method based on a generative model for detection of anomalies such as prosthesis, implants, screws, zippers, and metals in Two-dimensional (2D) radiographs. The generative model is trained following an unsupervised fashion using clinical radiographs as well as simulated data, neither of...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17432 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17432 |
| Nivel de acceso: | acceso abierto |
| Materia: | Anomaly Detection Unsupervised Learning Generative Adversarial Networks Pelvic radiographs https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_8b67fb9d73ec92f87bf289a14deca90d |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/17432 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Unsupervised anomaly detection in 2D radiographs using generative models |
| title |
Unsupervised anomaly detection in 2D radiographs using generative models |
| spellingShingle |
Unsupervised anomaly detection in 2D radiographs using generative models Estacio Cerquin, Laura Jovani Anomaly Detection Unsupervised Learning Generative Adversarial Networks Pelvic radiographs https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Unsupervised anomaly detection in 2D radiographs using generative models |
| title_full |
Unsupervised anomaly detection in 2D radiographs using generative models |
| title_fullStr |
Unsupervised anomaly detection in 2D radiographs using generative models |
| title_full_unstemmed |
Unsupervised anomaly detection in 2D radiographs using generative models |
| title_sort |
Unsupervised anomaly detection in 2D radiographs using generative models |
| author |
Estacio Cerquin, Laura Jovani |
| author_facet |
Estacio Cerquin, Laura Jovani |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Mora Colque, Rensso |
| dc.contributor.author.fl_str_mv |
Estacio Cerquin, Laura Jovani |
| dc.subject.es_PE.fl_str_mv |
Anomaly Detection Unsupervised Learning Generative Adversarial Networks Pelvic radiographs |
| topic |
Anomaly Detection Unsupervised Learning Generative Adversarial Networks Pelvic radiographs https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
We present a method based on a generative model for detection of anomalies such as prosthesis, implants, screws, zippers, and metals in Two-dimensional (2D) radiographs. The generative model is trained following an unsupervised fashion using clinical radiographs as well as simulated data, neither of them containing anomalies. Our approach employs a reconstruction loss and a latent space consistency loss which have the benefit of identifying similarities which are forced to reconstruct X-rays without anomalies. In order to detect images with anomalies, an anomaly score is also computed employing the reconstruction loss and the latent space consistency loss. Additionally, the Frechet distance is introduced as part of the reconstruction loss. These losses are computed between an input X-ray and the one reconstructed by the proposed generative model. Validation was performed using clinical pelvis radiographs. We achieved an Area Under the Curve (AUC) of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of the proposed method for detecting outliers as well as the advantage of utilizing synthetic data for the training stage. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-02-08T16:06:37Z |
| dc.date.available.none.fl_str_mv |
2023-02-08T16:06:37Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1076272 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/17432 |
| identifier_str_mv |
1076272 |
| url |
https://hdl.handle.net/20.500.12590/17432 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Católica San Pablo |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad Católica San Pablo Repositorio Institucional - UCSP |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f52fa5d7-34cb-4366-8c13-75b917d97dbd/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1aab2baa-2d4e-475f-be70-b0200ac4e949/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/fc8f065a-821a-4d96-99f8-bb7b1b2d1c60/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/03846827-cf8d-4352-9fe4-6793e0eaa407/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8029dbf1-933d-4cf6-a5c7-d576e8bce42b/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b128fc78-53e9-4991-aa82-ec104e552f88/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/543f6318-d427-4adf-ae4f-b2d44b82e1c5/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1dc4bc4b-195b-4cab-a74d-c39037894574/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/02ec1440-09e2-4556-9f74-fbe1f0c2743b/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/cfb2b8f1-34d0-4051-9630-5844b0b3b4d4/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/07774d0a-10c5-426e-8c91-6050929e6d7b/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/23fc0efd-385f-4dbe-a07b-116b787b613a/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/64eac8a6-d693-4dff-8adf-fcd6b700fec8/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 78ec217ab84eda6ce9fe7dcb62872dc7 07aab54eb40c440da779284de1a12cba e0daef15fce59256f5a7f5b44d22696b a0afb3275a241061053641709c47b9d5 6994603629b6a35afe2ec10e68fb2e26 af9bfe5d5c6b7fa16f23252dcac55612 f6fabe41fcc5634cc2e7554380c92b04 eb14091be06f1b6511f6ae4924b75eae 547cd93b600812d85d58379976dd7645 1355f1e52111ce00ccd69fd305626b46 86e8ba971a0b89bf153bc5f4bf08480f 56227680f9767236f6227f2aec200a84 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053037939851264 |
| spelling |
Mora Colque, RenssoEstacio Cerquin, Laura Jovani2023-02-08T16:06:37Z2023-02-08T16:06:37Z20221076272https://hdl.handle.net/20.500.12590/17432We present a method based on a generative model for detection of anomalies such as prosthesis, implants, screws, zippers, and metals in Two-dimensional (2D) radiographs. The generative model is trained following an unsupervised fashion using clinical radiographs as well as simulated data, neither of them containing anomalies. Our approach employs a reconstruction loss and a latent space consistency loss which have the benefit of identifying similarities which are forced to reconstruct X-rays without anomalies. In order to detect images with anomalies, an anomaly score is also computed employing the reconstruction loss and the latent space consistency loss. Additionally, the Frechet distance is introduced as part of the reconstruction loss. These losses are computed between an input X-ray and the one reconstructed by the proposed generative model. Validation was performed using clinical pelvis radiographs. We achieved an Area Under the Curve (AUC) of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of the proposed method for detecting outliers as well as the advantage of utilizing synthetic data for the training stage.Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPAnomaly DetectionUnsupervised LearningGenerative Adversarial NetworksPelvic radiographshttps://purl.org/pe-repo/ocde/ford#1.02.01Unsupervised anomaly detection in 2D radiographs using generative modelsinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestra en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional de Ciencia de la Computación46913887https://orcid.org/0000-0003-4734-875242846291https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, José EduardoCámara Chávez, GuillermoMenotti, DavidMontoya Zegarra, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f52fa5d7-34cb-4366-8c13-75b917d97dbd/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALESTACIO_CERQUIN_LAU_UNS.pdfESTACIO_CERQUIN_LAU_UNS.pdfapplication/pdf25035174https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1aab2baa-2d4e-475f-be70-b0200ac4e949/download78ec217ab84eda6ce9fe7dcb62872dc7MD52TURNITIN - ESTACIO_CERQUIN_LAU.pdfTURNITIN - ESTACIO_CERQUIN_LAU.pdfapplication/pdf1171043https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/fc8f065a-821a-4d96-99f8-bb7b1b2d1c60/download07aab54eb40c440da779284de1a12cbaMD53QOLQA - ESTACIO_CERQUIN_LAU.pdfQOLQA - ESTACIO_CERQUIN_LAU.pdfapplication/pdf362821https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/03846827-cf8d-4352-9fe4-6793e0eaa407/downloade0daef15fce59256f5a7f5b44d22696bMD54ACTA - ESTACIO_CERQUIN_LAU.pdfACTA - ESTACIO_CERQUIN_LAU.pdfapplication/pdf512002https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8029dbf1-933d-4cf6-a5c7-d576e8bce42b/downloada0afb3275a241061053641709c47b9d5MD55TEXTESTACIO_CERQUIN_LAU_UNS.pdf.txtESTACIO_CERQUIN_LAU_UNS.pdf.txtExtracted texttext/plain183866https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b128fc78-53e9-4991-aa82-ec104e552f88/download6994603629b6a35afe2ec10e68fb2e26MD56TURNITIN - ESTACIO_CERQUIN_LAU.pdf.txtTURNITIN - ESTACIO_CERQUIN_LAU.pdf.txtExtracted texttext/plain192179https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/543f6318-d427-4adf-ae4f-b2d44b82e1c5/downloadaf9bfe5d5c6b7fa16f23252dcac55612MD57QOLQA - ESTACIO_CERQUIN_LAU.pdf.txtQOLQA - ESTACIO_CERQUIN_LAU.pdf.txtExtracted texttext/plain4665https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1dc4bc4b-195b-4cab-a74d-c39037894574/downloadf6fabe41fcc5634cc2e7554380c92b04MD58ACTA - ESTACIO_CERQUIN_LAU.pdf.txtACTA - ESTACIO_CERQUIN_LAU.pdf.txtExtracted texttext/plain1931https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/02ec1440-09e2-4556-9f74-fbe1f0c2743b/downloadeb14091be06f1b6511f6ae4924b75eaeMD59THUMBNAILESTACIO_CERQUIN_LAU_UNS.pdf.jpgESTACIO_CERQUIN_LAU_UNS.pdf.jpgGenerated Thumbnailimage/jpeg3685https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/cfb2b8f1-34d0-4051-9630-5844b0b3b4d4/download547cd93b600812d85d58379976dd7645MD510TURNITIN - ESTACIO_CERQUIN_LAU.pdf.jpgTURNITIN - ESTACIO_CERQUIN_LAU.pdf.jpgGenerated Thumbnailimage/jpeg4863https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/07774d0a-10c5-426e-8c91-6050929e6d7b/download1355f1e52111ce00ccd69fd305626b46MD511QOLQA - ESTACIO_CERQUIN_LAU.pdf.jpgQOLQA - ESTACIO_CERQUIN_LAU.pdf.jpgGenerated Thumbnailimage/jpeg5806https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/23fc0efd-385f-4dbe-a07b-116b787b613a/download86e8ba971a0b89bf153bc5f4bf08480fMD512ACTA - ESTACIO_CERQUIN_LAU.pdf.jpgACTA - ESTACIO_CERQUIN_LAU.pdf.jpgGenerated Thumbnailimage/jpeg4966https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/64eac8a6-d693-4dff-8adf-fcd6b700fec8/download56227680f9767236f6227f2aec200a84MD51320.500.12590/17432oai:repositorio.ucsp.edu.pe:20.500.12590/174322023-11-02 15:20:05.785https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.43108 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).