Unsupervised anomaly detection in 2D radiographs using generative models

Descripción del Articulo

We present a method based on a generative model for detection of anomalies such as prosthesis, implants, screws, zippers, and metals in Two-dimensional (2D) radiographs. The generative model is trained following an unsupervised fashion using clinical radiographs as well as simulated data, neither of...

Descripción completa

Detalles Bibliográficos
Autor: Estacio Cerquin, Laura Jovani
Formato: tesis de maestría
Fecha de Publicación:2022
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/17432
Enlace del recurso:https://hdl.handle.net/20.500.12590/17432
Nivel de acceso:acceso abierto
Materia:Anomaly Detection
Unsupervised Learning
Generative Adversarial Networks
Pelvic radiographs
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_8b67fb9d73ec92f87bf289a14deca90d
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/17432
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Unsupervised anomaly detection in 2D radiographs using generative models
title Unsupervised anomaly detection in 2D radiographs using generative models
spellingShingle Unsupervised anomaly detection in 2D radiographs using generative models
Estacio Cerquin, Laura Jovani
Anomaly Detection
Unsupervised Learning
Generative Adversarial Networks
Pelvic radiographs
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Unsupervised anomaly detection in 2D radiographs using generative models
title_full Unsupervised anomaly detection in 2D radiographs using generative models
title_fullStr Unsupervised anomaly detection in 2D radiographs using generative models
title_full_unstemmed Unsupervised anomaly detection in 2D radiographs using generative models
title_sort Unsupervised anomaly detection in 2D radiographs using generative models
author Estacio Cerquin, Laura Jovani
author_facet Estacio Cerquin, Laura Jovani
author_role author
dc.contributor.advisor.fl_str_mv Mora Colque, Rensso
dc.contributor.author.fl_str_mv Estacio Cerquin, Laura Jovani
dc.subject.es_PE.fl_str_mv Anomaly Detection
Unsupervised Learning
Generative Adversarial Networks
Pelvic radiographs
topic Anomaly Detection
Unsupervised Learning
Generative Adversarial Networks
Pelvic radiographs
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description We present a method based on a generative model for detection of anomalies such as prosthesis, implants, screws, zippers, and metals in Two-dimensional (2D) radiographs. The generative model is trained following an unsupervised fashion using clinical radiographs as well as simulated data, neither of them containing anomalies. Our approach employs a reconstruction loss and a latent space consistency loss which have the benefit of identifying similarities which are forced to reconstruct X-rays without anomalies. In order to detect images with anomalies, an anomaly score is also computed employing the reconstruction loss and the latent space consistency loss. Additionally, the Frechet distance is introduced as part of the reconstruction loss. These losses are computed between an input X-ray and the one reconstructed by the proposed generative model. Validation was performed using clinical pelvis radiographs. We achieved an Area Under the Curve (AUC) of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of the proposed method for detecting outliers as well as the advantage of utilizing synthetic data for the training stage.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-02-08T16:06:37Z
dc.date.available.none.fl_str_mv 2023-02-08T16:06:37Z
dc.date.issued.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1076272
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/17432
identifier_str_mv 1076272
url https://hdl.handle.net/20.500.12590/17432
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f52fa5d7-34cb-4366-8c13-75b917d97dbd/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1aab2baa-2d4e-475f-be70-b0200ac4e949/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/fc8f065a-821a-4d96-99f8-bb7b1b2d1c60/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/03846827-cf8d-4352-9fe4-6793e0eaa407/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8029dbf1-933d-4cf6-a5c7-d576e8bce42b/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b128fc78-53e9-4991-aa82-ec104e552f88/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/543f6318-d427-4adf-ae4f-b2d44b82e1c5/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1dc4bc4b-195b-4cab-a74d-c39037894574/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/02ec1440-09e2-4556-9f74-fbe1f0c2743b/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/cfb2b8f1-34d0-4051-9630-5844b0b3b4d4/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/07774d0a-10c5-426e-8c91-6050929e6d7b/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/23fc0efd-385f-4dbe-a07b-116b787b613a/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/64eac8a6-d693-4dff-8adf-fcd6b700fec8/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
78ec217ab84eda6ce9fe7dcb62872dc7
07aab54eb40c440da779284de1a12cba
e0daef15fce59256f5a7f5b44d22696b
a0afb3275a241061053641709c47b9d5
6994603629b6a35afe2ec10e68fb2e26
af9bfe5d5c6b7fa16f23252dcac55612
f6fabe41fcc5634cc2e7554380c92b04
eb14091be06f1b6511f6ae4924b75eae
547cd93b600812d85d58379976dd7645
1355f1e52111ce00ccd69fd305626b46
86e8ba971a0b89bf153bc5f4bf08480f
56227680f9767236f6227f2aec200a84
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053037939851264
spelling Mora Colque, RenssoEstacio Cerquin, Laura Jovani2023-02-08T16:06:37Z2023-02-08T16:06:37Z20221076272https://hdl.handle.net/20.500.12590/17432We present a method based on a generative model for detection of anomalies such as prosthesis, implants, screws, zippers, and metals in Two-dimensional (2D) radiographs. The generative model is trained following an unsupervised fashion using clinical radiographs as well as simulated data, neither of them containing anomalies. Our approach employs a reconstruction loss and a latent space consistency loss which have the benefit of identifying similarities which are forced to reconstruct X-rays without anomalies. In order to detect images with anomalies, an anomaly score is also computed employing the reconstruction loss and the latent space consistency loss. Additionally, the Frechet distance is introduced as part of the reconstruction loss. These losses are computed between an input X-ray and the one reconstructed by the proposed generative model. Validation was performed using clinical pelvis radiographs. We achieved an Area Under the Curve (AUC) of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of the proposed method for detecting outliers as well as the advantage of utilizing synthetic data for the training stage.Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPAnomaly DetectionUnsupervised LearningGenerative Adversarial NetworksPelvic radiographshttps://purl.org/pe-repo/ocde/ford#1.02.01Unsupervised anomaly detection in 2D radiographs using generative modelsinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestra en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional de Ciencia de la Computación46913887https://orcid.org/0000-0003-4734-875242846291https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, José EduardoCámara Chávez, GuillermoMenotti, DavidMontoya Zegarra, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f52fa5d7-34cb-4366-8c13-75b917d97dbd/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALESTACIO_CERQUIN_LAU_UNS.pdfESTACIO_CERQUIN_LAU_UNS.pdfapplication/pdf25035174https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1aab2baa-2d4e-475f-be70-b0200ac4e949/download78ec217ab84eda6ce9fe7dcb62872dc7MD52TURNITIN - ESTACIO_CERQUIN_LAU.pdfTURNITIN - ESTACIO_CERQUIN_LAU.pdfapplication/pdf1171043https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/fc8f065a-821a-4d96-99f8-bb7b1b2d1c60/download07aab54eb40c440da779284de1a12cbaMD53QOLQA - ESTACIO_CERQUIN_LAU.pdfQOLQA - ESTACIO_CERQUIN_LAU.pdfapplication/pdf362821https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/03846827-cf8d-4352-9fe4-6793e0eaa407/downloade0daef15fce59256f5a7f5b44d22696bMD54ACTA - ESTACIO_CERQUIN_LAU.pdfACTA - ESTACIO_CERQUIN_LAU.pdfapplication/pdf512002https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8029dbf1-933d-4cf6-a5c7-d576e8bce42b/downloada0afb3275a241061053641709c47b9d5MD55TEXTESTACIO_CERQUIN_LAU_UNS.pdf.txtESTACIO_CERQUIN_LAU_UNS.pdf.txtExtracted texttext/plain183866https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b128fc78-53e9-4991-aa82-ec104e552f88/download6994603629b6a35afe2ec10e68fb2e26MD56TURNITIN - ESTACIO_CERQUIN_LAU.pdf.txtTURNITIN - ESTACIO_CERQUIN_LAU.pdf.txtExtracted texttext/plain192179https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/543f6318-d427-4adf-ae4f-b2d44b82e1c5/downloadaf9bfe5d5c6b7fa16f23252dcac55612MD57QOLQA - ESTACIO_CERQUIN_LAU.pdf.txtQOLQA - ESTACIO_CERQUIN_LAU.pdf.txtExtracted texttext/plain4665https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1dc4bc4b-195b-4cab-a74d-c39037894574/downloadf6fabe41fcc5634cc2e7554380c92b04MD58ACTA - ESTACIO_CERQUIN_LAU.pdf.txtACTA - ESTACIO_CERQUIN_LAU.pdf.txtExtracted texttext/plain1931https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/02ec1440-09e2-4556-9f74-fbe1f0c2743b/downloadeb14091be06f1b6511f6ae4924b75eaeMD59THUMBNAILESTACIO_CERQUIN_LAU_UNS.pdf.jpgESTACIO_CERQUIN_LAU_UNS.pdf.jpgGenerated Thumbnailimage/jpeg3685https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/cfb2b8f1-34d0-4051-9630-5844b0b3b4d4/download547cd93b600812d85d58379976dd7645MD510TURNITIN - ESTACIO_CERQUIN_LAU.pdf.jpgTURNITIN - ESTACIO_CERQUIN_LAU.pdf.jpgGenerated Thumbnailimage/jpeg4863https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/07774d0a-10c5-426e-8c91-6050929e6d7b/download1355f1e52111ce00ccd69fd305626b46MD511QOLQA - ESTACIO_CERQUIN_LAU.pdf.jpgQOLQA - ESTACIO_CERQUIN_LAU.pdf.jpgGenerated Thumbnailimage/jpeg5806https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/23fc0efd-385f-4dbe-a07b-116b787b613a/download86e8ba971a0b89bf153bc5f4bf08480fMD512ACTA - ESTACIO_CERQUIN_LAU.pdf.jpgACTA - ESTACIO_CERQUIN_LAU.pdf.jpgGenerated Thumbnailimage/jpeg4966https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/64eac8a6-d693-4dff-8adf-fcd6b700fec8/download56227680f9767236f6227f2aec200a84MD51320.500.12590/17432oai:repositorio.ucsp.edu.pe:20.500.12590/174322023-11-02 15:20:05.785https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.43108
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).