Priority sampling and visual attention for self-driving car
Descripción del Articulo
End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techni...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17744 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17744 |
| Nivel de acceso: | acceso abierto |
| Materia: | Visual attention Self-driving Non-identically distributed data distribution End-to-end methods https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_7ec24bf5f87f9e8a34a1d55d43d674c3 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/17744 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Priority sampling and visual attention for self-driving car |
| title |
Priority sampling and visual attention for self-driving car |
| spellingShingle |
Priority sampling and visual attention for self-driving car Flores Benites, Victor Visual attention Self-driving Non-identically distributed data distribution End-to-end methods https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Priority sampling and visual attention for self-driving car |
| title_full |
Priority sampling and visual attention for self-driving car |
| title_fullStr |
Priority sampling and visual attention for self-driving car |
| title_full_unstemmed |
Priority sampling and visual attention for self-driving car |
| title_sort |
Priority sampling and visual attention for self-driving car |
| author |
Flores Benites, Victor |
| author_facet |
Flores Benites, Victor |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Mora Colque, Rensso Victor Hugo |
| dc.contributor.author.fl_str_mv |
Flores Benites, Victor |
| dc.subject.es_PE.fl_str_mv |
Visual attention Self-driving Non-identically distributed data distribution End-to-end methods |
| topic |
Visual attention Self-driving Non-identically distributed data distribution End-to-end methods https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techniques. First, we propose the priority sampling algorithm, which biases a training sampling towards unknown observations for the model. Priority sampling employs a trade-off strategy that incentivizes the training algorithm to explore the whole dataset. Our results show a reduction of the error in the control signals in all the models studied. Moreover, we show evidence that our algorithm limits overtraining on noisy training samples. As a second approach, we propose a model based on the theory of visual attention (Bundesen, 1990) by which selecting relevant visual information to build an optimal environment representation. Our model employs two visual information selection mechanisms: spatial and feature-based attention. Spatial attention selects regions with visual encoding similar to contextual encoding, while feature-based attention selects features disentangled with useful information for routine driving. Furthermore, we encourage the model to recognize new sources of visual information by adding a bottom-up input. Results in the CoRL-2017 dataset (Dosovitskiy et al., 2017) show that our spatial attention mechanism recognizes regions relevant to the driving task. Our model builds disentangled features with low cosine similarity, but with high representation similarity. Finally, we report performance improvements over traditional end-to-end models. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-27T13:57:42Z |
| dc.date.available.none.fl_str_mv |
2023-09-27T13:57:42Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1079965 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/17744 |
| identifier_str_mv |
1079965 |
| url |
https://hdl.handle.net/20.500.12590/17744 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Católica San pablo |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad Católica San pablo |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b2a9440e-7a1c-4982-b59c-82fe9d7c4bbe/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/358fecb1-ca23-4aa9-9553-6ea6c257893c/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33bee73b-a539-4b21-aec4-f1019adb32e1/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ad458118-00a1-4c7f-b17e-3937994fd917/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/71c3c75c-4c2c-4416-98fe-07c15c56239d/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5f6a9f4f-e16a-47db-97ae-2296c754a71a/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ed597ecf-5787-4917-9ed6-7913e2a4ef8f/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a308e204-63e7-42ee-a4b1-6af90c5a975e/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ff2fb723-0750-46b1-a25f-99a654222500/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/519f58f9-231e-44fa-917b-ca789e47dc56/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/779632ba-6a78-4b77-84fb-4ab2c598b916/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/95186a55-49d7-4d62-bd54-a36e669dae21/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/46c14965-7c88-47a9-98db-9c86943b7fc4/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 f0d9377ffe3292ec936f66a4f9a29245 0b7a02848b4b1cbe95558eae87b5c620 edaffdce18241c41ccfc6e0b950f3b95 b6ede10321fde55a3fd4e6234e807356 adf2a00273c653a1639cdaab3160e931 829eab0cb18e9868dd4c74eb0aa00448 6d93d3216dc4a7f5df47d4876fbec4d3 b3b66f8e1ba556279109d5e19cee0a90 0cb736114cb8264ff7fad8167c961eb4 069fa82649b899eb89f9b49b9908e418 9117cb070d44d7c21a72b0667d4bbbc6 7bc5836715075ebf7cf728c940b78d27 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053031547731968 |
| spelling |
Mora Colque, Rensso Victor HugoFlores Benites, Victor2023-09-27T13:57:42Z2023-09-27T13:57:42Z20231079965https://hdl.handle.net/20.500.12590/17744End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techniques. First, we propose the priority sampling algorithm, which biases a training sampling towards unknown observations for the model. Priority sampling employs a trade-off strategy that incentivizes the training algorithm to explore the whole dataset. Our results show a reduction of the error in the control signals in all the models studied. Moreover, we show evidence that our algorithm limits overtraining on noisy training samples. As a second approach, we propose a model based on the theory of visual attention (Bundesen, 1990) by which selecting relevant visual information to build an optimal environment representation. Our model employs two visual information selection mechanisms: spatial and feature-based attention. Spatial attention selects regions with visual encoding similar to contextual encoding, while feature-based attention selects features disentangled with useful information for routine driving. Furthermore, we encourage the model to recognize new sources of visual information by adding a bottom-up input. Results in the CoRL-2017 dataset (Dosovitskiy et al., 2017) show that our spatial attention mechanism recognizes regions relevant to the driving task. Our model builds disentangled features with low cosine similarity, but with high representation similarity. Finally, we report performance improvements over traditional end-to-end models.Tesis de maestríaapplication/pdfengUniversidad Católica San pabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Visual attentionSelf-drivingNon-identically distributed data distribution End-to-end methodshttps://purl.org/pe-repo/ocde/ford#1.02.01Priority sampling and visual attention for self-driving carinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación71962886https://orcid.org/0000-0003-4734-875242846291https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, Jose EduardoCamara Chavez, GuillermoChancán, MarvinLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b2a9440e-7a1c-4982-b59c-82fe9d7c4bbe/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALFLORES_BENITES_VIC_PRI.pdfFLORES_BENITES_VIC_PRI.pdfapplication/pdf20749536https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/358fecb1-ca23-4aa9-9553-6ea6c257893c/downloadf0d9377ffe3292ec936f66a4f9a29245MD52TURNITIN.pdfTURNITIN.pdfapplication/pdf26803666https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33bee73b-a539-4b21-aec4-f1019adb32e1/download0b7a02848b4b1cbe95558eae87b5c620MD53AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf328871https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ad458118-00a1-4c7f-b17e-3937994fd917/downloadedaffdce18241c41ccfc6e0b950f3b95MD54ACTA.pdfACTA.pdfapplication/pdf59924https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/71c3c75c-4c2c-4416-98fe-07c15c56239d/downloadb6ede10321fde55a3fd4e6234e807356MD55TEXTFLORES_BENITES_VIC_PRI.pdf.txtFLORES_BENITES_VIC_PRI.pdf.txtExtracted texttext/plain100485https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5f6a9f4f-e16a-47db-97ae-2296c754a71a/downloadadf2a00273c653a1639cdaab3160e931MD56TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain1889https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ed597ecf-5787-4917-9ed6-7913e2a4ef8f/download829eab0cb18e9868dd4c74eb0aa00448MD58AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain6https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a308e204-63e7-42ee-a4b1-6af90c5a975e/download6d93d3216dc4a7f5df47d4876fbec4d3MD510ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain1750https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ff2fb723-0750-46b1-a25f-99a654222500/downloadb3b66f8e1ba556279109d5e19cee0a90MD512THUMBNAILFLORES_BENITES_VIC_PRI.pdf.jpgFLORES_BENITES_VIC_PRI.pdf.jpgGenerated Thumbnailimage/jpeg3576https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/519f58f9-231e-44fa-917b-ca789e47dc56/download0cb736114cb8264ff7fad8167c961eb4MD57TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3268https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/779632ba-6a78-4b77-84fb-4ab2c598b916/download069fa82649b899eb89f9b49b9908e418MD59AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5047https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/95186a55-49d7-4d62-bd54-a36e669dae21/download9117cb070d44d7c21a72b0667d4bbbc6MD511ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4375https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/46c14965-7c88-47a9-98db-9c86943b7fc4/download7bc5836715075ebf7cf728c940b78d27MD51320.500.12590/17744oai:repositorio.ucsp.edu.pe:20.500.12590/177442024-10-01 08:26:35.812https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.366547 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).