Priority sampling and visual attention for self-driving car

Descripción del Articulo

End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techni...

Descripción completa

Detalles Bibliográficos
Autor: Flores Benites, Victor
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/17744
Enlace del recurso:https://hdl.handle.net/20.500.12590/17744
Nivel de acceso:acceso abierto
Materia:Visual attention
Self-driving
Non-identically distributed data distribution
End-to-end methods
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_7ec24bf5f87f9e8a34a1d55d43d674c3
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/17744
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Priority sampling and visual attention for self-driving car
title Priority sampling and visual attention for self-driving car
spellingShingle Priority sampling and visual attention for self-driving car
Flores Benites, Victor
Visual attention
Self-driving
Non-identically distributed data distribution
End-to-end methods
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Priority sampling and visual attention for self-driving car
title_full Priority sampling and visual attention for self-driving car
title_fullStr Priority sampling and visual attention for self-driving car
title_full_unstemmed Priority sampling and visual attention for self-driving car
title_sort Priority sampling and visual attention for self-driving car
author Flores Benites, Victor
author_facet Flores Benites, Victor
author_role author
dc.contributor.advisor.fl_str_mv Mora Colque, Rensso Victor Hugo
dc.contributor.author.fl_str_mv Flores Benites, Victor
dc.subject.es_PE.fl_str_mv Visual attention
Self-driving
Non-identically distributed data distribution
End-to-end methods
topic Visual attention
Self-driving
Non-identically distributed data distribution
End-to-end methods
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techniques. First, we propose the priority sampling algorithm, which biases a training sampling towards unknown observations for the model. Priority sampling employs a trade-off strategy that incentivizes the training algorithm to explore the whole dataset. Our results show a reduction of the error in the control signals in all the models studied. Moreover, we show evidence that our algorithm limits overtraining on noisy training samples. As a second approach, we propose a model based on the theory of visual attention (Bundesen, 1990) by which selecting relevant visual information to build an optimal environment representation. Our model employs two visual information selection mechanisms: spatial and feature-based attention. Spatial attention selects regions with visual encoding similar to contextual encoding, while feature-based attention selects features disentangled with useful information for routine driving. Furthermore, we encourage the model to recognize new sources of visual information by adding a bottom-up input. Results in the CoRL-2017 dataset (Dosovitskiy et al., 2017) show that our spatial attention mechanism recognizes regions relevant to the driving task. Our model builds disentangled features with low cosine similarity, but with high representation similarity. Finally, we report performance improvements over traditional end-to-end models.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-27T13:57:42Z
dc.date.available.none.fl_str_mv 2023-09-27T13:57:42Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1079965
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/17744
identifier_str_mv 1079965
url https://hdl.handle.net/20.500.12590/17744
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica San pablo
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Católica San pablo
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b2a9440e-7a1c-4982-b59c-82fe9d7c4bbe/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/358fecb1-ca23-4aa9-9553-6ea6c257893c/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33bee73b-a539-4b21-aec4-f1019adb32e1/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ad458118-00a1-4c7f-b17e-3937994fd917/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/71c3c75c-4c2c-4416-98fe-07c15c56239d/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5f6a9f4f-e16a-47db-97ae-2296c754a71a/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ed597ecf-5787-4917-9ed6-7913e2a4ef8f/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a308e204-63e7-42ee-a4b1-6af90c5a975e/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ff2fb723-0750-46b1-a25f-99a654222500/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/519f58f9-231e-44fa-917b-ca789e47dc56/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/779632ba-6a78-4b77-84fb-4ab2c598b916/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/95186a55-49d7-4d62-bd54-a36e669dae21/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/46c14965-7c88-47a9-98db-9c86943b7fc4/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
f0d9377ffe3292ec936f66a4f9a29245
0b7a02848b4b1cbe95558eae87b5c620
edaffdce18241c41ccfc6e0b950f3b95
b6ede10321fde55a3fd4e6234e807356
adf2a00273c653a1639cdaab3160e931
829eab0cb18e9868dd4c74eb0aa00448
6d93d3216dc4a7f5df47d4876fbec4d3
b3b66f8e1ba556279109d5e19cee0a90
0cb736114cb8264ff7fad8167c961eb4
069fa82649b899eb89f9b49b9908e418
9117cb070d44d7c21a72b0667d4bbbc6
7bc5836715075ebf7cf728c940b78d27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053031547731968
spelling Mora Colque, Rensso Victor HugoFlores Benites, Victor2023-09-27T13:57:42Z2023-09-27T13:57:42Z20231079965https://hdl.handle.net/20.500.12590/17744End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techniques. First, we propose the priority sampling algorithm, which biases a training sampling towards unknown observations for the model. Priority sampling employs a trade-off strategy that incentivizes the training algorithm to explore the whole dataset. Our results show a reduction of the error in the control signals in all the models studied. Moreover, we show evidence that our algorithm limits overtraining on noisy training samples. As a second approach, we propose a model based on the theory of visual attention (Bundesen, 1990) by which selecting relevant visual information to build an optimal environment representation. Our model employs two visual information selection mechanisms: spatial and feature-based attention. Spatial attention selects regions with visual encoding similar to contextual encoding, while feature-based attention selects features disentangled with useful information for routine driving. Furthermore, we encourage the model to recognize new sources of visual information by adding a bottom-up input. Results in the CoRL-2017 dataset (Dosovitskiy et al., 2017) show that our spatial attention mechanism recognizes regions relevant to the driving task. Our model builds disentangled features with low cosine similarity, but with high representation similarity. Finally, we report performance improvements over traditional end-to-end models.Tesis de maestríaapplication/pdfengUniversidad Católica San pabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Visual attentionSelf-drivingNon-identically distributed data distribution End-to-end methodshttps://purl.org/pe-repo/ocde/ford#1.02.01Priority sampling and visual attention for self-driving carinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación71962886https://orcid.org/0000-0003-4734-875242846291https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, Jose EduardoCamara Chavez, GuillermoChancán, MarvinLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b2a9440e-7a1c-4982-b59c-82fe9d7c4bbe/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALFLORES_BENITES_VIC_PRI.pdfFLORES_BENITES_VIC_PRI.pdfapplication/pdf20749536https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/358fecb1-ca23-4aa9-9553-6ea6c257893c/downloadf0d9377ffe3292ec936f66a4f9a29245MD52TURNITIN.pdfTURNITIN.pdfapplication/pdf26803666https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33bee73b-a539-4b21-aec4-f1019adb32e1/download0b7a02848b4b1cbe95558eae87b5c620MD53AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf328871https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ad458118-00a1-4c7f-b17e-3937994fd917/downloadedaffdce18241c41ccfc6e0b950f3b95MD54ACTA.pdfACTA.pdfapplication/pdf59924https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/71c3c75c-4c2c-4416-98fe-07c15c56239d/downloadb6ede10321fde55a3fd4e6234e807356MD55TEXTFLORES_BENITES_VIC_PRI.pdf.txtFLORES_BENITES_VIC_PRI.pdf.txtExtracted texttext/plain100485https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5f6a9f4f-e16a-47db-97ae-2296c754a71a/downloadadf2a00273c653a1639cdaab3160e931MD56TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain1889https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ed597ecf-5787-4917-9ed6-7913e2a4ef8f/download829eab0cb18e9868dd4c74eb0aa00448MD58AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain6https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a308e204-63e7-42ee-a4b1-6af90c5a975e/download6d93d3216dc4a7f5df47d4876fbec4d3MD510ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain1750https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ff2fb723-0750-46b1-a25f-99a654222500/downloadb3b66f8e1ba556279109d5e19cee0a90MD512THUMBNAILFLORES_BENITES_VIC_PRI.pdf.jpgFLORES_BENITES_VIC_PRI.pdf.jpgGenerated Thumbnailimage/jpeg3576https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/519f58f9-231e-44fa-917b-ca789e47dc56/download0cb736114cb8264ff7fad8167c961eb4MD57TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3268https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/779632ba-6a78-4b77-84fb-4ab2c598b916/download069fa82649b899eb89f9b49b9908e418MD59AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5047https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/95186a55-49d7-4d62-bd54-a36e669dae21/download9117cb070d44d7c21a72b0667d4bbbc6MD511ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4375https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/46c14965-7c88-47a9-98db-9c86943b7fc4/download7bc5836715075ebf7cf728c940b78d27MD51320.500.12590/17744oai:repositorio.ucsp.edu.pe:20.500.12590/177442024-10-01 08:26:35.812https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.366547
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).