Reconocimiento de rostros con Elastic Bunch Graph Matching en aplicaciones de video
Descripción del Articulo
El reconocimiento de rostros es un área con una gran cantidad de aplicaciones y técnicas. Muchas de esas técnicas ofrecen buenos resultados cuando se aplican a situaciones donde el ambiente en el cual se desea realizar el reconocimiento es controlado, esto se entiende como el control de los factores...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/15688 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/15688 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reconocimiento de rostros Vídeo vigilancia Ambiente no controlado Elastic Bunch Graph Matching https://purl.org/pe-repo/ocde/ford#1.02.01 |
| Sumario: | El reconocimiento de rostros es un área con una gran cantidad de aplicaciones y técnicas. Muchas de esas técnicas ofrecen buenos resultados cuando se aplican a situaciones donde el ambiente en el cual se desea realizar el reconocimiento es controlado, esto se entiende como el control de los factores que influyen en el proceso de reconocimiento, tales como iluminación, pose del rostro, expresión facial, etc. Pero para el caso de ambientes no controlados, como lo es la videovigilancia, el reconocimiento de rostros aún presenta dificultades: variación en la iluminación, falta de colaboración de las personas a reconocer, entre varios otros. Debido a la importancia que tiene en seguridad y a la cantidad de infraestructura existente, es necesario aplicar el reconocimiento de rostros a video vigilancia. Para afrontar los problemas mencionados, proponemos un pipeline de reconocimiento de rostros usando EBGM con CLNF como reemplazo a la función de detección de puntos del algoritmo original, para finalmente ser aplicado en vídeo. Además en este trabajo de tesis se realizó un análisis paramétrico de EBGM para encontrar el factor más influyente en su rendimiento, junto con su comparación con otros métodos de reconocimiento de rostros. También se determinó que elementos forman parte del pipeline presentado como resultado final. Finalmente la probamos la propuesta en una base de datos creada a partir de tomas de una cámara de seguridad, que consta de 24 sujetos con 8 imágenes cada uno. Los resultados finales muestran una mejora en imágenes tomadas en la mañana y en el medio día respectivamente. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).