Técnicas de aprendizaje profundo para el análisis de la percepción de la seguridad urbana
Descripción del Articulo
La percepción es la forma en que los humanos interpretan y comprenden la información captada después de la interacción con el entorno que les rodea, aprendiendo nuevas experiencias o reforzando otras ya vividas. La percepción de la seguridad urbana se puede describir en cómo los humanos presentan un...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17274 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17274 |
| Nivel de acceso: | acceso abierto |
| Materia: | Deep learning Convolutional neural networks GAN Features extraction Urban perception https://purl.org/pe-repo/ocde/ford#1.02.01 |
| Sumario: | La percepción es la forma en que los humanos interpretan y comprenden la información captada después de la interacción con el entorno que les rodea, aprendiendo nuevas experiencias o reforzando otras ya vividas. La percepción de la seguridad urbana se puede describir en cómo los humanos presentan una reacción ante un determinado estímulo proveniente de la apariencia visual o conocimiento previo sobre un cierto lugar (calles, zonas urbanas, etc). A partir de esta idea, diversos estudios buscaron describir dicho fenómeno teniendo como ejemplo más notable la teoría denominada \The Broken Window", la cual estudiaba el comportamiento de las personas frente a ambientes cuya apariencia visual era caótica. Así mismo, recientemente este estudio está siendo implementado utilizando diversos tipos de datos, no solo limitándose a encuestas o experimentos sociales, con el objetivo de determinar la relación entre la percepción urbana y características intrínsecas de los ciudades; de los cuales, uno de los conjuntos de datos más resaltables es Place Pulse. En este trabajo, se propone una metodología que permita analizar y explorar los datos de Place Pulse 2.0. Como resultados principales, presentamos un análisis exploratorio de los datos, resaltando la organización y comportamiento de los datos. Además, presentamos una comparación entre diferentes técnicas de aprendizaje supervisado y semi-supervisado. Mostrando que un modelo Generative Adversarial Networks (GAN) presenta mejores resultados que técnicas convencionales. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).