Análisis de técnicas de deep learning para el reconocimiento de atropellos en videos
Descripción del Articulo
Uno de los factores más importantes de muerte son los accidentes automovilísticos, un caso particular son los atropellos donde los vehículos colisionan con los peatones, evento que ocurre en unos instantes y en varios casos los vehículos se dan a la fuga dejando heridos a los peatones, una alerta au...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17444 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17444 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reconocimiento de videos Deep Learning Redes Convolucionales https://purl.org/pe-repo/ocde/ford#1.02.02 |
| Sumario: | Uno de los factores más importantes de muerte son los accidentes automovilísticos, un caso particular son los atropellos donde los vehículos colisionan con los peatones, evento que ocurre en unos instantes y en varios casos los vehículos se dan a la fuga dejando heridos a los peatones, una alerta automática de dichos eventos ayudaría a disminuir el factor de muerte de los atropellados. En ese sentido la presente investigación propone usar los videos registrados por las cámaras de vigilancia para realizar el reconocimiento de atropellos mediante el uso de técnicas de Deep Learning analizando las diferentes arquitecturas y propuestas para determinar la técnica mas adecuada para el reconocimiento automático de atropellos. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).