Weakly supervised spatiotemporal violence detection in surveillance video

Descripción del Articulo

Violence Detection in surveillance video is an important task to prevent social and personal security issues. Usually, traditional surveillance systems need a human operator to monitor a large number of cameras, leading to problems such as miss detections and false positive detections. To address th...

Descripción completa

Detalles Bibliográficos
Autor: Choqueluque Roman, David Gabriel
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/17743
Enlace del recurso:https://hdl.handle.net/20.500.12590/17743
Nivel de acceso:acceso abierto
Materia:Weakly supervised learning
Spatio-temporal detection of violence,Keywords
Dynamic image
Video surveillance
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_15323aaf2e421f86e110013bce8aa3b4
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/17743
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Weakly supervised spatiotemporal violence detection in surveillance video
title Weakly supervised spatiotemporal violence detection in surveillance video
spellingShingle Weakly supervised spatiotemporal violence detection in surveillance video
Choqueluque Roman, David Gabriel
Weakly supervised learning
Spatio-temporal detection of violence,Keywords
Dynamic image
Video surveillance
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Weakly supervised spatiotemporal violence detection in surveillance video
title_full Weakly supervised spatiotemporal violence detection in surveillance video
title_fullStr Weakly supervised spatiotemporal violence detection in surveillance video
title_full_unstemmed Weakly supervised spatiotemporal violence detection in surveillance video
title_sort Weakly supervised spatiotemporal violence detection in surveillance video
author Choqueluque Roman, David Gabriel
author_facet Choqueluque Roman, David Gabriel
author_role author
dc.contributor.advisor.fl_str_mv Camara Chavez, Guillermo
dc.contributor.author.fl_str_mv Choqueluque Roman, David Gabriel
dc.subject.es_PE.fl_str_mv Weakly supervised learning
Spatio-temporal detection of violence,Keywords
Dynamic image
Video surveillance
topic Weakly supervised learning
Spatio-temporal detection of violence,Keywords
Dynamic image
Video surveillance
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Violence Detection in surveillance video is an important task to prevent social and personal security issues. Usually, traditional surveillance systems need a human operator to monitor a large number of cameras, leading to problems such as miss detections and false positive detections. To address this problem, in last years, researchers have been proposing computer vision-based methods to detect violent actions. The violence detection task could be considered a sub-task of the action recognition task but violence detection has been less investigated. Although a lot of action recognition works were proposed for human behavior analysis, there are just a few CCTV-based surveillance methods for analyzing violent actions. In the literature of violence detection, most of the methods tackle the problem as a classication task, where a short video is labeled as violent or non-violent. Just a few methods tackle the problem as a spatiotemporal detection task, where the method should detect spatially and temporally violent actions. We assume that the lack of such methods is due the exorbitant cost of annotating, at frame-level, current violence datasets. In this work, we propose a spatiotemporal violence detection method using a weakly supervised approach to train the model using only video-level labels. Our proposal uses a Deep Learning model following a Fast-RCNN (Girshick, 2015) style architecture extended temporally. Our method starts by generating spatiotemporal proposals leveraging a pre-trained person detector and motion appearance to build such proposals called action tubes. An action tube is dened as a set of temporally related bounding boxes that enclose and track a person doing an action. Then, a video with the action tubes is fed to the model to extract spatiotemporal features, and nally, we train a tube classier based on Multiple-instance learning (Liu et al., 2012). The spatial localization relies on the pre-trained person detector and motion regions extracted from dynamic images (Bilen et al., 2017). A dynamic image summarizes the movement of a set of frames to an image. Meanwhile, temporal localization is done by the action tubes by grouping spatial regions over time. We evaluate the proposed method on four publicly available datasets such as Hockey Fight, RWF-2000, RLVSD and UCFCrime2Local. Our proposal achieves an accuracy score of 97:3%, 88:71%, and 92:88% for violence detection in the Hockey Fight, RWF-2000, and RLVSD datasets, respectively; which are very close to the state-of-the-art methods. Besides, our method is able to detect spatial locations in video frames. To validate our spatiotemporal violence detection results, we use the UCFCrime2Local dataset. The proposed approach reduces the spatiotemporal localization error to 31:92%, which demonstrates the feasibility of the approach to detect and track violent actions.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-26T21:38:16Z
dc.date.available.none.fl_str_mv 2023-09-26T21:38:16Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1079964
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/17743
identifier_str_mv 1079964
url https://hdl.handle.net/20.500.12590/17743
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica San pablo
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Católica San pablo
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9e17a24d-83dc-4412-ae7d-9dccc644a1bf/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/73996077-c593-477b-a341-0d973ade23c5/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5820a501-fe7f-49ae-acf5-5701fcb7f053/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/74a51ba4-2870-4145-9d63-add3ef1dad2f/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/90a7ee25-4d28-4841-bff1-32b0babd7ce5/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/49fce5ea-30b1-48e6-8480-ab249e082547/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8fbd88b-5110-40e5-9ec0-fb69ed84686b/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7942a37a-55e8-4807-b801-34994a71d331/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f56d4e69-42ba-473b-8c8f-767cdcff5c00/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ee97738e-ffdc-4f86-8145-d5e50bcd7611/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d5218d4e-92fe-49ec-8e2f-cbf294cd89af/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/19c14355-273c-491e-a583-dd4595a4e5ba/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ab90e180-c42a-41c4-a4b3-8ec1482b52c5/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/85bcdf70-e3c2-4f2c-a583-51ee05cbb627/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a69f38b2-5ae1-4a90-bd41-0c0c40b0b5e8/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9ebf90c0-d6ea-4a60-8de1-101976383f85/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0daaa5c0-7359-4c54-8b8b-8820381f2392/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f7bb0d20-def4-4b67-ac42-5df803b1217c/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a517ada7-9fa2-4e47-9a26-3c740dd3f0df/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
6efda5d19e48739555a8f30c9cc8a615
9e145c0c4b5dada1b61baf659bc5aa40
500ab2e223d7b67f9a2ab513712542b2
b8d6ddb9adfa94847db22fc9b94f9c81
217c2ce486d39a21a154288c2034fcef
24e3ac7fd5335a69c1f9d27646658dd7
b541d77f66b84bf3eb918dbfc064613e
0ff4ab33c86dc5e18b86fc3e3c0422b6
0ff4ab33c86dc5e18b86fc3e3c0422b6
24e3ac7fd5335a69c1f9d27646658dd7
b541d77f66b84bf3eb918dbfc064613e
5ec859a5e8cf20241caa3599b0218cc4
a9e547cc6bf313e677b509670d9abe25
a070bc81740f23a1b3904a60293885b1
9181c4bcfebf39bf6068cdf5af598644
9181c4bcfebf39bf6068cdf5af598644
a9e547cc6bf313e677b509670d9abe25
a070bc81740f23a1b3904a60293885b1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053032774565888
spelling Camara Chavez, GuillermoChoqueluque Roman, David Gabriel2023-09-26T21:38:16Z2023-09-26T21:38:16Z20231079964https://hdl.handle.net/20.500.12590/17743Violence Detection in surveillance video is an important task to prevent social and personal security issues. Usually, traditional surveillance systems need a human operator to monitor a large number of cameras, leading to problems such as miss detections and false positive detections. To address this problem, in last years, researchers have been proposing computer vision-based methods to detect violent actions. The violence detection task could be considered a sub-task of the action recognition task but violence detection has been less investigated. Although a lot of action recognition works were proposed for human behavior analysis, there are just a few CCTV-based surveillance methods for analyzing violent actions. In the literature of violence detection, most of the methods tackle the problem as a classication task, where a short video is labeled as violent or non-violent. Just a few methods tackle the problem as a spatiotemporal detection task, where the method should detect spatially and temporally violent actions. We assume that the lack of such methods is due the exorbitant cost of annotating, at frame-level, current violence datasets. In this work, we propose a spatiotemporal violence detection method using a weakly supervised approach to train the model using only video-level labels. Our proposal uses a Deep Learning model following a Fast-RCNN (Girshick, 2015) style architecture extended temporally. Our method starts by generating spatiotemporal proposals leveraging a pre-trained person detector and motion appearance to build such proposals called action tubes. An action tube is dened as a set of temporally related bounding boxes that enclose and track a person doing an action. Then, a video with the action tubes is fed to the model to extract spatiotemporal features, and nally, we train a tube classier based on Multiple-instance learning (Liu et al., 2012). The spatial localization relies on the pre-trained person detector and motion regions extracted from dynamic images (Bilen et al., 2017). A dynamic image summarizes the movement of a set of frames to an image. Meanwhile, temporal localization is done by the action tubes by grouping spatial regions over time. We evaluate the proposed method on four publicly available datasets such as Hockey Fight, RWF-2000, RLVSD and UCFCrime2Local. Our proposal achieves an accuracy score of 97:3%, 88:71%, and 92:88% for violence detection in the Hockey Fight, RWF-2000, and RLVSD datasets, respectively; which are very close to the state-of-the-art methods. Besides, our method is able to detect spatial locations in video frames. To validate our spatiotemporal violence detection results, we use the UCFCrime2Local dataset. The proposed approach reduces the spatiotemporal localization error to 31:92%, which demonstrates the feasibility of the approach to detect and track violent actions.Tesis de maestríaapplication/pdfengUniversidad Católica San pabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Weakly supervised learningSpatio-temporal detection of violence,KeywordsDynamic imageVideo surveillancehttps://purl.org/pe-repo/ocde/ford#1.02.01Weakly supervised spatiotemporal violence detection in surveillance videoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación74071654https://orcid.org/0000-0003-2440-024730960286https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, Jose EduardoGomez Nieto, Erick MauricioAlves Bonfim de Queiroz, RafaelLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9e17a24d-83dc-4412-ae7d-9dccc644a1bf/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALAUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf207768https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/73996077-c593-477b-a341-0d973ade23c5/download6efda5d19e48739555a8f30c9cc8a615MD54CHOQUELUQUE_ROMAN_DAV_WEA.pdfapplication/pdf97943387https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5820a501-fe7f-49ae-acf5-5701fcb7f053/download9e145c0c4b5dada1b61baf659bc5aa40MD528TURNITIN.pdfTURNITIN.pdfapplication/pdf20037569https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/74a51ba4-2870-4145-9d63-add3ef1dad2f/download500ab2e223d7b67f9a2ab513712542b2MD53ACTA.pdfACTA.pdfapplication/pdf60043https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/90a7ee25-4d28-4841-bff1-32b0babd7ce5/downloadb8d6ddb9adfa94847db22fc9b94f9c81MD55THUMBNAILCHOQUELUQUE_ROMAN_DAV_WEA.pdf.jpgCHOQUELUQUE_ROMAN_DAV_WEA.pdf.jpgGenerated Thumbnailimage/jpeg3492https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/49fce5ea-30b1-48e6-8480-ab249e082547/download217c2ce486d39a21a154288c2034fcefMD515TURNITIN.jpgTURNITIN.jpgGenerated Thumbnailimage/jpeg3346https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8fbd88b-5110-40e5-9ec0-fb69ed84686b/download24e3ac7fd5335a69c1f9d27646658dd7MD517ACTA.jpgACTA.jpgGenerated Thumbnailimage/jpeg4250https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7942a37a-55e8-4807-b801-34994a71d331/downloadb541d77f66b84bf3eb918dbfc064613eMD521AUTORIZACIÓN.jpgAUTORIZACIÓN.jpgGenerated Thumbnailimage/jpeg5759https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f56d4e69-42ba-473b-8c8f-767cdcff5c00/download0ff4ab33c86dc5e18b86fc3e3c0422b6MD519AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5759https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ee97738e-ffdc-4f86-8145-d5e50bcd7611/download0ff4ab33c86dc5e18b86fc3e3c0422b6MD530TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3346https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d5218d4e-92fe-49ec-8e2f-cbf294cd89af/download24e3ac7fd5335a69c1f9d27646658dd7MD532ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4250https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/19c14355-273c-491e-a583-dd4595a4e5ba/downloadb541d77f66b84bf3eb918dbfc064613eMD534TEXTCHOQUELUQUE_ROMAN_DAV_WEA.pdf.txtCHOQUELUQUE_ROMAN_DAV_WEA.pdf.txtExtracted texttext/plain100561https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ab90e180-c42a-41c4-a4b3-8ec1482b52c5/download5ec859a5e8cf20241caa3599b0218cc4MD514TURNITIN.txtTURNITIN.txtExtracted texttext/plain1988https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/85bcdf70-e3c2-4f2c-a583-51ee05cbb627/downloada9e547cc6bf313e677b509670d9abe25MD516ACTA.txtACTA.txtExtracted texttext/plain1676https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a69f38b2-5ae1-4a90-bd41-0c0c40b0b5e8/downloada070bc81740f23a1b3904a60293885b1MD520AUTORIZACIÓN.txtAUTORIZACIÓN.txtExtracted texttext/plain4603https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9ebf90c0-d6ea-4a60-8de1-101976383f85/download9181c4bcfebf39bf6068cdf5af598644MD518AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4603https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0daaa5c0-7359-4c54-8b8b-8820381f2392/download9181c4bcfebf39bf6068cdf5af598644MD529TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain1988https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f7bb0d20-def4-4b67-ac42-5df803b1217c/downloada9e547cc6bf313e677b509670d9abe25MD531ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain1676https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a517ada7-9fa2-4e47-9a26-3c740dd3f0df/downloada070bc81740f23a1b3904a60293885b1MD53320.500.12590/17743oai:repositorio.ucsp.edu.pe:20.500.12590/177432023-09-29 03:00:18.744https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessrestrictedhttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.472619
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).