Weakly supervised spatiotemporal violence detection in surveillance video
Descripción del Articulo
Violence Detection in surveillance video is an important task to prevent social and personal security issues. Usually, traditional surveillance systems need a human operator to monitor a large number of cameras, leading to problems such as miss detections and false positive detections. To address th...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17743 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17743 |
| Nivel de acceso: | acceso abierto |
| Materia: | Weakly supervised learning Spatio-temporal detection of violence,Keywords Dynamic image Video surveillance https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_15323aaf2e421f86e110013bce8aa3b4 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/17743 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Weakly supervised spatiotemporal violence detection in surveillance video |
| title |
Weakly supervised spatiotemporal violence detection in surveillance video |
| spellingShingle |
Weakly supervised spatiotemporal violence detection in surveillance video Choqueluque Roman, David Gabriel Weakly supervised learning Spatio-temporal detection of violence,Keywords Dynamic image Video surveillance https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Weakly supervised spatiotemporal violence detection in surveillance video |
| title_full |
Weakly supervised spatiotemporal violence detection in surveillance video |
| title_fullStr |
Weakly supervised spatiotemporal violence detection in surveillance video |
| title_full_unstemmed |
Weakly supervised spatiotemporal violence detection in surveillance video |
| title_sort |
Weakly supervised spatiotemporal violence detection in surveillance video |
| author |
Choqueluque Roman, David Gabriel |
| author_facet |
Choqueluque Roman, David Gabriel |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Camara Chavez, Guillermo |
| dc.contributor.author.fl_str_mv |
Choqueluque Roman, David Gabriel |
| dc.subject.es_PE.fl_str_mv |
Weakly supervised learning Spatio-temporal detection of violence,Keywords Dynamic image Video surveillance |
| topic |
Weakly supervised learning Spatio-temporal detection of violence,Keywords Dynamic image Video surveillance https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
Violence Detection in surveillance video is an important task to prevent social and personal security issues. Usually, traditional surveillance systems need a human operator to monitor a large number of cameras, leading to problems such as miss detections and false positive detections. To address this problem, in last years, researchers have been proposing computer vision-based methods to detect violent actions. The violence detection task could be considered a sub-task of the action recognition task but violence detection has been less investigated. Although a lot of action recognition works were proposed for human behavior analysis, there are just a few CCTV-based surveillance methods for analyzing violent actions. In the literature of violence detection, most of the methods tackle the problem as a classication task, where a short video is labeled as violent or non-violent. Just a few methods tackle the problem as a spatiotemporal detection task, where the method should detect spatially and temporally violent actions. We assume that the lack of such methods is due the exorbitant cost of annotating, at frame-level, current violence datasets. In this work, we propose a spatiotemporal violence detection method using a weakly supervised approach to train the model using only video-level labels. Our proposal uses a Deep Learning model following a Fast-RCNN (Girshick, 2015) style architecture extended temporally. Our method starts by generating spatiotemporal proposals leveraging a pre-trained person detector and motion appearance to build such proposals called action tubes. An action tube is dened as a set of temporally related bounding boxes that enclose and track a person doing an action. Then, a video with the action tubes is fed to the model to extract spatiotemporal features, and nally, we train a tube classier based on Multiple-instance learning (Liu et al., 2012). The spatial localization relies on the pre-trained person detector and motion regions extracted from dynamic images (Bilen et al., 2017). A dynamic image summarizes the movement of a set of frames to an image. Meanwhile, temporal localization is done by the action tubes by grouping spatial regions over time. We evaluate the proposed method on four publicly available datasets such as Hockey Fight, RWF-2000, RLVSD and UCFCrime2Local. Our proposal achieves an accuracy score of 97:3%, 88:71%, and 92:88% for violence detection in the Hockey Fight, RWF-2000, and RLVSD datasets, respectively; which are very close to the state-of-the-art methods. Besides, our method is able to detect spatial locations in video frames. To validate our spatiotemporal violence detection results, we use the UCFCrime2Local dataset. The proposed approach reduces the spatiotemporal localization error to 31:92%, which demonstrates the feasibility of the approach to detect and track violent actions. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-26T21:38:16Z |
| dc.date.available.none.fl_str_mv |
2023-09-26T21:38:16Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1079964 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/17743 |
| identifier_str_mv |
1079964 |
| url |
https://hdl.handle.net/20.500.12590/17743 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Católica San pablo |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad Católica San pablo |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9e17a24d-83dc-4412-ae7d-9dccc644a1bf/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/73996077-c593-477b-a341-0d973ade23c5/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5820a501-fe7f-49ae-acf5-5701fcb7f053/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/74a51ba4-2870-4145-9d63-add3ef1dad2f/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/90a7ee25-4d28-4841-bff1-32b0babd7ce5/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/49fce5ea-30b1-48e6-8480-ab249e082547/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8fbd88b-5110-40e5-9ec0-fb69ed84686b/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7942a37a-55e8-4807-b801-34994a71d331/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f56d4e69-42ba-473b-8c8f-767cdcff5c00/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ee97738e-ffdc-4f86-8145-d5e50bcd7611/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d5218d4e-92fe-49ec-8e2f-cbf294cd89af/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/19c14355-273c-491e-a583-dd4595a4e5ba/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ab90e180-c42a-41c4-a4b3-8ec1482b52c5/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/85bcdf70-e3c2-4f2c-a583-51ee05cbb627/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a69f38b2-5ae1-4a90-bd41-0c0c40b0b5e8/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9ebf90c0-d6ea-4a60-8de1-101976383f85/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0daaa5c0-7359-4c54-8b8b-8820381f2392/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f7bb0d20-def4-4b67-ac42-5df803b1217c/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a517ada7-9fa2-4e47-9a26-3c740dd3f0df/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 6efda5d19e48739555a8f30c9cc8a615 9e145c0c4b5dada1b61baf659bc5aa40 500ab2e223d7b67f9a2ab513712542b2 b8d6ddb9adfa94847db22fc9b94f9c81 217c2ce486d39a21a154288c2034fcef 24e3ac7fd5335a69c1f9d27646658dd7 b541d77f66b84bf3eb918dbfc064613e 0ff4ab33c86dc5e18b86fc3e3c0422b6 0ff4ab33c86dc5e18b86fc3e3c0422b6 24e3ac7fd5335a69c1f9d27646658dd7 b541d77f66b84bf3eb918dbfc064613e 5ec859a5e8cf20241caa3599b0218cc4 a9e547cc6bf313e677b509670d9abe25 a070bc81740f23a1b3904a60293885b1 9181c4bcfebf39bf6068cdf5af598644 9181c4bcfebf39bf6068cdf5af598644 a9e547cc6bf313e677b509670d9abe25 a070bc81740f23a1b3904a60293885b1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053032774565888 |
| spelling |
Camara Chavez, GuillermoChoqueluque Roman, David Gabriel2023-09-26T21:38:16Z2023-09-26T21:38:16Z20231079964https://hdl.handle.net/20.500.12590/17743Violence Detection in surveillance video is an important task to prevent social and personal security issues. Usually, traditional surveillance systems need a human operator to monitor a large number of cameras, leading to problems such as miss detections and false positive detections. To address this problem, in last years, researchers have been proposing computer vision-based methods to detect violent actions. The violence detection task could be considered a sub-task of the action recognition task but violence detection has been less investigated. Although a lot of action recognition works were proposed for human behavior analysis, there are just a few CCTV-based surveillance methods for analyzing violent actions. In the literature of violence detection, most of the methods tackle the problem as a classication task, where a short video is labeled as violent or non-violent. Just a few methods tackle the problem as a spatiotemporal detection task, where the method should detect spatially and temporally violent actions. We assume that the lack of such methods is due the exorbitant cost of annotating, at frame-level, current violence datasets. In this work, we propose a spatiotemporal violence detection method using a weakly supervised approach to train the model using only video-level labels. Our proposal uses a Deep Learning model following a Fast-RCNN (Girshick, 2015) style architecture extended temporally. Our method starts by generating spatiotemporal proposals leveraging a pre-trained person detector and motion appearance to build such proposals called action tubes. An action tube is dened as a set of temporally related bounding boxes that enclose and track a person doing an action. Then, a video with the action tubes is fed to the model to extract spatiotemporal features, and nally, we train a tube classier based on Multiple-instance learning (Liu et al., 2012). The spatial localization relies on the pre-trained person detector and motion regions extracted from dynamic images (Bilen et al., 2017). A dynamic image summarizes the movement of a set of frames to an image. Meanwhile, temporal localization is done by the action tubes by grouping spatial regions over time. We evaluate the proposed method on four publicly available datasets such as Hockey Fight, RWF-2000, RLVSD and UCFCrime2Local. Our proposal achieves an accuracy score of 97:3%, 88:71%, and 92:88% for violence detection in the Hockey Fight, RWF-2000, and RLVSD datasets, respectively; which are very close to the state-of-the-art methods. Besides, our method is able to detect spatial locations in video frames. To validate our spatiotemporal violence detection results, we use the UCFCrime2Local dataset. The proposed approach reduces the spatiotemporal localization error to 31:92%, which demonstrates the feasibility of the approach to detect and track violent actions.Tesis de maestríaapplication/pdfengUniversidad Católica San pabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Weakly supervised learningSpatio-temporal detection of violence,KeywordsDynamic imageVideo surveillancehttps://purl.org/pe-repo/ocde/ford#1.02.01Weakly supervised spatiotemporal violence detection in surveillance videoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación74071654https://orcid.org/0000-0003-2440-024730960286https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, Jose EduardoGomez Nieto, Erick MauricioAlves Bonfim de Queiroz, RafaelLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9e17a24d-83dc-4412-ae7d-9dccc644a1bf/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALAUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf207768https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/73996077-c593-477b-a341-0d973ade23c5/download6efda5d19e48739555a8f30c9cc8a615MD54CHOQUELUQUE_ROMAN_DAV_WEA.pdfapplication/pdf97943387https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5820a501-fe7f-49ae-acf5-5701fcb7f053/download9e145c0c4b5dada1b61baf659bc5aa40MD528TURNITIN.pdfTURNITIN.pdfapplication/pdf20037569https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/74a51ba4-2870-4145-9d63-add3ef1dad2f/download500ab2e223d7b67f9a2ab513712542b2MD53ACTA.pdfACTA.pdfapplication/pdf60043https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/90a7ee25-4d28-4841-bff1-32b0babd7ce5/downloadb8d6ddb9adfa94847db22fc9b94f9c81MD55THUMBNAILCHOQUELUQUE_ROMAN_DAV_WEA.pdf.jpgCHOQUELUQUE_ROMAN_DAV_WEA.pdf.jpgGenerated Thumbnailimage/jpeg3492https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/49fce5ea-30b1-48e6-8480-ab249e082547/download217c2ce486d39a21a154288c2034fcefMD515TURNITIN.jpgTURNITIN.jpgGenerated Thumbnailimage/jpeg3346https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8fbd88b-5110-40e5-9ec0-fb69ed84686b/download24e3ac7fd5335a69c1f9d27646658dd7MD517ACTA.jpgACTA.jpgGenerated Thumbnailimage/jpeg4250https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7942a37a-55e8-4807-b801-34994a71d331/downloadb541d77f66b84bf3eb918dbfc064613eMD521AUTORIZACIÓN.jpgAUTORIZACIÓN.jpgGenerated Thumbnailimage/jpeg5759https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f56d4e69-42ba-473b-8c8f-767cdcff5c00/download0ff4ab33c86dc5e18b86fc3e3c0422b6MD519AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5759https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ee97738e-ffdc-4f86-8145-d5e50bcd7611/download0ff4ab33c86dc5e18b86fc3e3c0422b6MD530TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3346https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d5218d4e-92fe-49ec-8e2f-cbf294cd89af/download24e3ac7fd5335a69c1f9d27646658dd7MD532ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4250https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/19c14355-273c-491e-a583-dd4595a4e5ba/downloadb541d77f66b84bf3eb918dbfc064613eMD534TEXTCHOQUELUQUE_ROMAN_DAV_WEA.pdf.txtCHOQUELUQUE_ROMAN_DAV_WEA.pdf.txtExtracted texttext/plain100561https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ab90e180-c42a-41c4-a4b3-8ec1482b52c5/download5ec859a5e8cf20241caa3599b0218cc4MD514TURNITIN.txtTURNITIN.txtExtracted texttext/plain1988https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/85bcdf70-e3c2-4f2c-a583-51ee05cbb627/downloada9e547cc6bf313e677b509670d9abe25MD516ACTA.txtACTA.txtExtracted texttext/plain1676https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a69f38b2-5ae1-4a90-bd41-0c0c40b0b5e8/downloada070bc81740f23a1b3904a60293885b1MD520AUTORIZACIÓN.txtAUTORIZACIÓN.txtExtracted texttext/plain4603https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9ebf90c0-d6ea-4a60-8de1-101976383f85/download9181c4bcfebf39bf6068cdf5af598644MD518AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4603https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0daaa5c0-7359-4c54-8b8b-8820381f2392/download9181c4bcfebf39bf6068cdf5af598644MD529TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain1988https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f7bb0d20-def4-4b67-ac42-5df803b1217c/downloada9e547cc6bf313e677b509670d9abe25MD531ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain1676https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a517ada7-9fa2-4e47-9a26-3c740dd3f0df/downloada070bc81740f23a1b3904a60293885b1MD53320.500.12590/17743oai:repositorio.ucsp.edu.pe:20.500.12590/177432023-09-29 03:00:18.744https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessrestrictedhttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.472619 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).