Estudio comparativo de Técnicas de supervisadas de Minería de Datos para Segmentación de Alumnos
Descripción del Articulo
En este trabajo se realiza un estudio comparativo de técnicas no supervisadas de minería de datos para la segmentación de alumnos utilizando algoritmos de K-means y PAM dentro del clustering particional y métodos de ward, single, complete, average, mcquitty, median y centroid del clustering jerárqui...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2017 |
Institución: | Universidad Católica de Santa María |
Repositorio: | UCSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ucsm.edu.pe:20.500.12920/6021 |
Enlace del recurso: | https://repositorio.ucsm.edu.pe/handle/20.500.12920/6021 |
Nivel de acceso: | acceso abierto |
Materia: | Minería de datos segmentación académica clustering |
Sumario: | En este trabajo se realiza un estudio comparativo de técnicas no supervisadas de minería de datos para la segmentación de alumnos utilizando algoritmos de K-means y PAM dentro del clustering particional y métodos de ward, single, complete, average, mcquitty, median y centroid del clustering jerárquico aglomerativo, luego se elige el algoritmo de minería de datos con la que se obtiene mejor calidad de agrupamiento utilizando medidas internas como las distancias intra-cluster e inter-cluster, y el coeficiente de silueta, obteniendo mejores resultados con la técnica de clustering particional K-means para la segmentación académica en tres grupos que puede ser utilizado para reforzar el aprendizaje de los alumnos en los niveles básico, intermedio y avanzado. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).