Optimización de la gestión de la cadena de suministro de una empresa distribuidora utilizando técnicas de aprendizaje automático

Descripción del Articulo

La presente tesis tiene como objetivo la optimización de la gestión de la cadena de suministro de una empresa distribuidora de productos alimenticios para supermercados locales de la ciudad de Arequipa mediante el uso de técnicas de Aprendizaje Automático. Se utilizó una metodología basada en CRISP-...

Descripción completa

Detalles Bibliográficos
Autor: Reinoso Carpio, Sebastián Darío
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Católica de Santa María
Repositorio:UCSM-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.ucsm.edu.pe:20.500.12920/12340
Enlace del recurso:https://repositorio.ucsm.edu.pe/handle/20.500.12920/12340
Nivel de acceso:acceso abierto
Materia:Inteligencia Artificial Aplicada
Aprendizaje Automático
Previsión de la Demanda
Cadena de Suministro
Python
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:La presente tesis tiene como objetivo la optimización de la gestión de la cadena de suministro de una empresa distribuidora de productos alimenticios para supermercados locales de la ciudad de Arequipa mediante el uso de técnicas de Aprendizaje Automático. Se utilizó una metodología basada en CRISP-DM para trabajar con los datos obtenidos para generar los modelos predictivos; los cuales fueron obtenidos de los años 2020 al 2021. Se utilizó los algoritmos de aprendizaje supervisado de regresión lineal múltiple, vectores de soporte de regresión, árboles de decisión de regresión y redes neuronales. Se obtuvo las métricas de cada modelo predictivo donde sobresale el de vectores de soporte de regresión (SVR) con la librería ScikitLearn, por tener un mejor desempeño con el conjunto de datos utilizado. Durante el desarrollo de la investigación se utilizó la plataforma de Google Colab y las librerías ScikitLearn y TensorFlow que fueron de utilidad para entrenar y evaluar los modelos predictivos. Finalmente, se pudo validar en la fase de resultados que se obtuvo una optimización en la devolución de los productos por supermercado en los indicadores de devolución mensual por supermercado en un 36.36%, en la devolución mensual por categoría en un 39.74% y la utilidad bruta porcentual creció un 25.95% después de la implementación del modelo predictivo
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).