A machine learning approach to find the determinants of Peruvian coca illegal crops

Descripción del Articulo

The current study analyzed the determinants of the Peruvian coca illegal plantations in the period 2003-2019. Hence, the DEVIDA database variables were gathered at first. Then, a machine learning-based technique is employed to select the most relevant variables for the study. That technique, Lasso,...

Descripción completa

Detalles Bibliográficos
Autores: Cipriano Romero, Débora Belén, Melo Estrella, Yadira Gina, Zambrano Laureano, María Isabel
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Continental
Repositorio:CONTINENTAL-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.continental.edu.pe:20.500.12394/12790
Enlace del recurso:https://hdl.handle.net/20.500.12394/12790
https://doi.org/10.5267/j.dsl.2021.12.003
Nivel de acceso:acceso abierto
Materia:Coca
Diseño de máquinas
Inteligencia artificial
https://purl.org/pe-repo/ocde/ford#2.02.04
id UCON_a22ed4f7e02c9d14bf8a945c0e4b7a09
oai_identifier_str oai:repositorio.continental.edu.pe:20.500.12394/12790
network_acronym_str UCON
network_name_str CONTINENTAL-Institucional
repository_id_str 4517
dc.title.es_ES.fl_str_mv A machine learning approach to find the determinants of Peruvian coca illegal crops
title A machine learning approach to find the determinants of Peruvian coca illegal crops
spellingShingle A machine learning approach to find the determinants of Peruvian coca illegal crops
Cipriano Romero, Débora Belén
Coca
Diseño de máquinas
Inteligencia artificial
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short A machine learning approach to find the determinants of Peruvian coca illegal crops
title_full A machine learning approach to find the determinants of Peruvian coca illegal crops
title_fullStr A machine learning approach to find the determinants of Peruvian coca illegal crops
title_full_unstemmed A machine learning approach to find the determinants of Peruvian coca illegal crops
title_sort A machine learning approach to find the determinants of Peruvian coca illegal crops
author Cipriano Romero, Débora Belén
author_facet Cipriano Romero, Débora Belén
Melo Estrella, Yadira Gina
Zambrano Laureano, María Isabel
author_role author
author2 Melo Estrella, Yadira Gina
Zambrano Laureano, María Isabel
author2_role author
author
dc.contributor.advisor.fl_str_mv Ruiz Parejas, Rubén Ángel
dc.contributor.author.fl_str_mv Cipriano Romero, Débora Belén
Melo Estrella, Yadira Gina
Zambrano Laureano, María Isabel
dc.subject.es_ES.fl_str_mv Coca
Diseño de máquinas
Inteligencia artificial
topic Coca
Diseño de máquinas
Inteligencia artificial
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The current study analyzed the determinants of the Peruvian coca illegal plantations in the period 2003-2019. Hence, the DEVIDA database variables were gathered at first. Then, a machine learning-based technique is employed to select the most relevant variables for the study. That technique, Lasso, selected as accurate variables eradication of coca plantations and pasta base. Both OLS and VAR are employed to analyze the relevance of the selected variables. OLS finds that eradication was negatively related to the dependent variable. Nonetheless, pb confiscation had a positive relationship with illegal coca crops. Furthermore, VAR encounters that only pb confiscation affected the dependent variable. Supplementary tests are carried to ensure the accuracy of the results. In consequence, it is concluded that eradication policies by themselves were not enough to discourage the coca plantations. Farmers should get instruction about alternative crops and financial help. Furthermore, it has been claimed that pb confiscation generates scarcity of the drug, which elevates its price. Thus, coca farmers are more motivated to plant coca because of the higher prices. Therefore, as long as the international demand, which is disposed to pay high prices, the coca illegal crops and its illicit products will exist.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-04-17T22:06:05Z
dc.date.available.none.fl_str_mv 2023-04-17T22:06:05Z
dc.date.issued.fl_str_mv 2022
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.es_ES.fl_str_mv Cipriano, D., Melo, Y. y Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops. Tesis para optar el título profesional de Ingeniera de Sistemas e Informática, Escuela Académico Profesional de Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo, Perú.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12394/12790
dc.identifier.journal.es_ES.fl_str_mv Decision Science Letters
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.5267/j.dsl.2021.12.003
identifier_str_mv Cipriano, D., Melo, Y. y Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops. Tesis para optar el título profesional de Ingeniera de Sistemas e Informática, Escuela Académico Profesional de Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo, Perú.
Decision Science Letters
url https://hdl.handle.net/20.500.12394/12790
https://doi.org/10.5267/j.dsl.2021.12.003
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.es_ES.fl_str_mv https://growingscience.com/beta/dsl/5214-a-machine-learning-approach-to-find-the-determinants-of-peruvian-coca-illegal-crops.html
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.es_ES.fl_str_mv Attribution 4.0 International (CC BY 4.0)
dc.rights.accessRights.es_ES.fl_str_mv Acceso abierto
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Attribution 4.0 International (CC BY 4.0)
Acceso abierto
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv p. 127-136
dc.publisher.es_ES.fl_str_mv Universidad Continental
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.es_ES.fl_str_mv Universidad Continental
Repositorio Institucional - Continental
dc.source.none.fl_str_mv reponame:CONTINENTAL-Institucional
instname:Universidad Continental
instacron:CONTINENTAL
instname_str Universidad Continental
instacron_str CONTINENTAL
institution CONTINENTAL
reponame_str CONTINENTAL-Institucional
collection CONTINENTAL-Institucional
bitstream.url.fl_str_mv https://repositorio.continental.edu.pe/backend/api/core/bitstreams/928430c1-219c-4efb-90bc-c3f99495bef3/download
https://repositorio.continental.edu.pe/backend/api/core/bitstreams/e38a2274-43b0-41f3-804b-ce80feebf649/download
https://repositorio.continental.edu.pe/backend/api/core/bitstreams/ba135a39-81da-4d1e-816f-69a3e0690eb8/download
https://repositorio.continental.edu.pe/backend/api/core/bitstreams/727c8ac1-24cd-4453-b140-85a728ef8423/download
https://repositorio.continental.edu.pe/backend/api/core/bitstreams/c235eb98-ede9-43e5-b4c9-eb94d4c8d123/download
https://repositorio.continental.edu.pe/backend/api/core/bitstreams/e2784988-fa68-42d5-9711-31b5e0e9e8ff/download
https://repositorio.continental.edu.pe/backend/api/core/bitstreams/b96a7bf9-5834-49c2-a566-d28de230447d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
9c6f160b4058bd0a43ee78172d1715a3
8971dc63f2e13fc2d0e12d568141da57
a734cbe0a9c5a81995460bb1e7546b1a
c1d220aa0cc4c5016ac224202313496b
09ed310799ed1724e5fef22aee452642
0958051ed1bde3104c6b099998c76335
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Continental
repository.mail.fl_str_mv repositorio@continental.edu.pe
_version_ 1853945249538244608
spelling Ruiz Parejas, Rubén ÁngelCipriano Romero, Débora BelénMelo Estrella, Yadira GinaZambrano Laureano, María Isabel2023-04-17T22:06:05Z2023-04-17T22:06:05Z2022Cipriano, D., Melo, Y. y Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops. Tesis para optar el título profesional de Ingeniera de Sistemas e Informática, Escuela Académico Profesional de Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo, Perú.https://hdl.handle.net/20.500.12394/12790Decision Science Lettershttps://doi.org/10.5267/j.dsl.2021.12.003The current study analyzed the determinants of the Peruvian coca illegal plantations in the period 2003-2019. Hence, the DEVIDA database variables were gathered at first. Then, a machine learning-based technique is employed to select the most relevant variables for the study. That technique, Lasso, selected as accurate variables eradication of coca plantations and pasta base. Both OLS and VAR are employed to analyze the relevance of the selected variables. OLS finds that eradication was negatively related to the dependent variable. Nonetheless, pb confiscation had a positive relationship with illegal coca crops. Furthermore, VAR encounters that only pb confiscation affected the dependent variable. Supplementary tests are carried to ensure the accuracy of the results. In consequence, it is concluded that eradication policies by themselves were not enough to discourage the coca plantations. Farmers should get instruction about alternative crops and financial help. Furthermore, it has been claimed that pb confiscation generates scarcity of the drug, which elevates its price. Thus, coca farmers are more motivated to plant coca because of the higher prices. Therefore, as long as the international demand, which is disposed to pay high prices, the coca illegal crops and its illicit products will exist.application/pdfp. 127-136engUniversidad ContinentalPEhttps://growingscience.com/beta/dsl/5214-a-machine-learning-approach-to-find-the-determinants-of-peruvian-coca-illegal-crops.htmlSUNEDUinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Attribution 4.0 International (CC BY 4.0)Acceso abiertoUniversidad ContinentalRepositorio Institucional - Continentalreponame:CONTINENTAL-Institucionalinstname:Universidad Continentalinstacron:CONTINENTALCocaDiseño de máquinasInteligencia artificialhttps://purl.org/pe-repo/ocde/ford#2.02.04A machine learning approach to find the determinants of Peruvian coca illegal cropsinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionIngeniera de Sistemas e InformáticaUniversidad Continental. Facultad de Ingeniería.Ingeniería de Sistemas e InformáticaPregrado presencial regular41935833https://orcid.org/0000-0002-5159-3307701182267404321871510945612156https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.continental.edu.pe/backend/api/core/bitstreams/928430c1-219c-4efb-90bc-c3f99495bef3/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALIV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdfIV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdfCipriano Romero, Débora Belén; Melo Estrella, Yadira Gina; Zambrano Laureano, María Isabelapplication/pdf772666https://repositorio.continental.edu.pe/backend/api/core/bitstreams/e38a2274-43b0-41f3-804b-ce80feebf649/download9c6f160b4058bd0a43ee78172d1715a3MD52IV_FIN_103_Autorización_2022.pdfIV_FIN_103_Autorización_2022.pdfAutorizaciónapplication/pdf179701https://repositorio.continental.edu.pe/backend/api/core/bitstreams/ba135a39-81da-4d1e-816f-69a3e0690eb8/download8971dc63f2e13fc2d0e12d568141da57MD53TEXTIV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdf.txtIV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdf.txtExtracted texttext/plain38730https://repositorio.continental.edu.pe/backend/api/core/bitstreams/727c8ac1-24cd-4453-b140-85a728ef8423/downloada734cbe0a9c5a81995460bb1e7546b1aMD512IV_FIN_103_Autorización_2022.pdf.txtIV_FIN_103_Autorización_2022.pdf.txtExtracted texttext/plain3818https://repositorio.continental.edu.pe/backend/api/core/bitstreams/c235eb98-ede9-43e5-b4c9-eb94d4c8d123/downloadc1d220aa0cc4c5016ac224202313496bMD514THUMBNAILIV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdf.jpgIV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdf.jpgGenerated Thumbnailimage/jpeg22607https://repositorio.continental.edu.pe/backend/api/core/bitstreams/e2784988-fa68-42d5-9711-31b5e0e9e8ff/download09ed310799ed1724e5fef22aee452642MD513IV_FIN_103_Autorización_2022.pdf.jpgIV_FIN_103_Autorización_2022.pdf.jpgGenerated Thumbnailimage/jpeg40283https://repositorio.continental.edu.pe/backend/api/core/bitstreams/b96a7bf9-5834-49c2-a566-d28de230447d/download0958051ed1bde3104c6b099998c76335MD51520.500.12394/12790oai:repositorio.continental.edu.pe:20.500.12394/127902025-12-02 14:47:01.754https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.continental.edu.peRepositorio de la Universidad Continentalrepositorio@continental.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.394499
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).