Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru

Descripción del Articulo

This study focused on estimating precipitation for the Santa basin located north of the capital of Peru, assessing spatial patterns and temporal variation. Precipitation products were used at a daily temporal resolution obtained from remote sensing datasets, including CHIRPS, PERSIANN-CCS, GPM and P...

Descripción completa

Detalles Bibliográficos
Autores: Loarte, Edwin, Medina, Katy, Villavicencio, Eduardo, León, Hairo, Lavado-Casimiro, W., Rabatel, Antoine, Jácome Vergaray, Gerardo, Hunink, Johannes, Lopez-Baeza, Ernesto
Formato: ponencia
Fecha de Publicación:2021
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/824
Enlace del recurso:https://hdl.handle.net/20.500.12542/824
https://doi.org/10.5194/egusphere-egu21-8996
Nivel de acceso:acceso abierto
Materia:Precipitación
Zonas Montañosas
Cuencas
Remote Sensing
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
id SEAM_29abb4f2666f022a36af6e3d4c66a442
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/824
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.en_US.fl_str_mv Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
title Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
spellingShingle Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
Loarte, Edwin
Precipitación
Zonas Montañosas
Cuencas
Remote Sensing
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
title_short Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
title_full Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
title_fullStr Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
title_full_unstemmed Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
title_sort Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru
author Loarte, Edwin
author_facet Loarte, Edwin
Medina, Katy
Villavicencio, Eduardo
León, Hairo
Lavado-Casimiro, W.
Rabatel, Antoine
Jácome Vergaray, Gerardo
Hunink, Johannes
Lopez-Baeza, Ernesto
author_role author
author2 Medina, Katy
Villavicencio, Eduardo
León, Hairo
Lavado-Casimiro, W.
Rabatel, Antoine
Jácome Vergaray, Gerardo
Hunink, Johannes
Lopez-Baeza, Ernesto
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Loarte, Edwin
Medina, Katy
Villavicencio, Eduardo
León, Hairo
Lavado-Casimiro, W.
Rabatel, Antoine
Jácome Vergaray, Gerardo
Hunink, Johannes
Lopez-Baeza, Ernesto
dc.subject.es_PE.fl_str_mv Precipitación
Zonas Montañosas
Cuencas
topic Precipitación
Zonas Montañosas
Cuencas
Remote Sensing
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
dc.subject.en_US.fl_str_mv Remote Sensing
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.none.fl_str_mv precipitacion - Clima y Eventos Naturales
description This study focused on estimating precipitation for the Santa basin located north of the capital of Peru, assessing spatial patterns and temporal variation. Precipitation products were used at a daily temporal resolution obtained from remote sensing datasets, including CHIRPS, PERSIANN-CCS, GPM and PISCO, altitude and vegetation products as NDVI-BOKU and GDEM. Also ground-based precipitation data from weather stations were collected from 35 meteorological stations (2012 -2019)
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-24T17:46:24Z
dc.date.available.none.fl_str_mv 2021-03-24T17:46:24Z
dc.date.issued.fl_str_mv 2021-01
dc.type.none.fl_str_mv info:eu-repo/semantics/lecture
dc.type.sinia.none.fl_str_mv text/libro.presentacion
format lecture
dc.identifier.citation.none.fl_str_mv Loarte, E., Medina, K., Villavicencio, E., León, H., Lavado, W., Rabatel, A., Jacome, G., Hunink, J., and Lopez-Baeza, E.: Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8996, https://doi.org/10.5194/egusphere-egu21-8996, 2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/824
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/egusphere-egu21-8996
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/824
identifier_str_mv Loarte, E., Medina, K., Villavicencio, E., León, H., Lavado, W., Rabatel, A., Jacome, G., Hunink, J., and Lopez-Baeza, E.: Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8996, https://doi.org/10.5194/egusphere-egu21-8996, 2021.
url https://hdl.handle.net/20.500.12542/824
https://doi.org/10.5194/egusphere-egu21-8996
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.isreferencedby.none.fl_str_mv EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8996
dc.relation.uri.es_PE.fl_str_mv https://meetingorganizer.copernicus.org/EGU21/EGU21-8996.html
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv European Geosciences Union
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/1/Analysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/5/Analysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/4/Analysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.jpg
bitstream.checksum.fl_str_mv 270c33c765aea71df6d86a6985de115d
9868ccc48a14c8d591352b6eaf7f6239
8a4605be74aa9ea9d79846c1fba20a33
cb51dd54ce4674382f08c2a24c313f96
c1daad84b23425b75cf6ab4a6e29820b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1808916937717055488
spelling Loarte, EdwinMedina, KatyVillavicencio, EduardoLeón, HairoLavado-Casimiro, W.Rabatel, AntoineJácome Vergaray, GerardoHunink, JohannesLopez-Baeza, Ernesto2021-03-24T17:46:24Z2021-03-24T17:46:24Z2021-01Loarte, E., Medina, K., Villavicencio, E., León, H., Lavado, W., Rabatel, A., Jacome, G., Hunink, J., and Lopez-Baeza, E.: Analysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peru, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8996, https://doi.org/10.5194/egusphere-egu21-8996, 2021.https://hdl.handle.net/20.500.12542/824https://doi.org/10.5194/egusphere-egu21-8996https://hdl.handle.net/20.500.12542/824This study focused on estimating precipitation for the Santa basin located north of the capital of Peru, assessing spatial patterns and temporal variation. Precipitation products were used at a daily temporal resolution obtained from remote sensing datasets, including CHIRPS, PERSIANN-CCS, GPM and PISCO, altitude and vegetation products as NDVI-BOKU and GDEM. Also ground-based precipitation data from weather stations were collected from 35 meteorological stations (2012 -2019)application/pdfengEuropean Geosciences UnionEGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8996https://meetingorganizer.copernicus.org/EGU21/EGU21-8996.htmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIPrecipitaciónZonas MontañosasCuencasRemote Sensinghttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Clima y Eventos NaturalesAnalysis of remote sensing and in situ datasets to estimate spatial precipitation in high mountain areas: case study Cordillera Blanca, Peruinfo:eu-repo/semantics/lecturetext/libro.presentacionORIGINALAnalysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdfAnalysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdfTexto Completoapplication/pdf58325http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/1/Analysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf270c33c765aea71df6d86a6985de115dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTAnalysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.txtAnalysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.txtExtracted texttext/plain3475http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/5/Analysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.txtcb51dd54ce4674382f08c2a24c313f96MD55THUMBNAILAnalysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.jpgAnalysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.jpgGenerated Thumbnailimage/jpeg4055http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/824/4/Analysis-of-remote-sensing-and-in-situ-datasets-to-estimate-spatial-precipitation-in-high-mountain-areas-case-study-Cordillera-Blanca-Peru.pdf.jpgc1daad84b23425b75cf6ab4a6e29820bMD5420.500.12542/824oai:repositorio.senamhi.gob.pe:20.500.12542/8242024-08-22 16:06:56.273Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).