A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
Descripción del Articulo
This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2015 |
Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
Repositorio: | SENAMHI-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/57 |
Enlace del recurso: | https://hdl.handle.net/20.500.12542/57 https://doi.org/10.1175/JHM-D-14-0197.1 |
Nivel de acceso: | acceso abierto |
Materia: | Amazonia Hydrologic models Precipitación Satellite observations Statistical techniques Surface observations https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Clima y Eventos Naturales |
id |
SEAM_0337e439942e1cc6d172a67ed4124ae2 |
---|---|
oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/57 |
network_acronym_str |
SEAM |
network_name_str |
SENAMHI-Institucional |
repository_id_str |
4818 |
dc.title.en_US.fl_str_mv |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
title |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
spellingShingle |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications Nerini, D. Amazonia Hydrologic models Precipitación Satellite observations Statistical techniques Surface observations https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Clima y Eventos Naturales |
title_short |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
title_full |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
title_fullStr |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
title_full_unstemmed |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
title_sort |
A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications |
author |
Nerini, D. |
author_facet |
Nerini, D. Zulkafli, Z. Wang, L.-P. Onof, C. Buytaert, W. Lavado-Casimiro, W. Guyot, J.L. |
author_role |
author |
author2 |
Zulkafli, Z. Wang, L.-P. Onof, C. Buytaert, W. Lavado-Casimiro, W. Guyot, J.L. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Nerini, D. Zulkafli, Z. Wang, L.-P. Onof, C. Buytaert, W. Lavado-Casimiro, W. Guyot, J.L. |
dc.subject.es_PE.fl_str_mv |
Amazonia |
topic |
Amazonia Hydrologic models Precipitación Satellite observations Statistical techniques Surface observations https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Clima y Eventos Naturales |
dc.subject.en_US.fl_str_mv |
Hydrologic models Precipitación Satellite observations Statistical techniques Surface observations |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
dc.subject.sinia.none.fl_str_mv |
precipitacion - Clima y Eventos Naturales |
description |
This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hydrological modeling. It is found that the double-kernel smoothing method delivered the most consistent improvement over the original satellite product in both the cross-validation and hydrological evaluation. The mean bias correction also improved hydrological performance scores, particularly at the subbasin scale where the rain gauge density is higher. Given the spatial heterogeneity of the climate, the size of the modeled catchment, and the sparsity of data, it is concluded that nonparametric merging methods can perform as well as or better than more complex geostatistical methods, whose assumptions may not hold under the studied conditions. Based on these results, a systematic approach to the selection of a satellite-rain gauge data merging technique is proposed that is based on data characteristics. Finally, the underperformance of an ordinary kriging interpolation of the rain gauge data, compared to TMPA and other merged products, supports the use of satellite-based products over gridded rain gauge products that utilize sparse data for hydrological modeling at large scales. |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2019-07-22T14:39:59Z |
dc.date.available.none.fl_str_mv |
2019-07-22T14:39:59Z |
dc.date.issued.fl_str_mv |
2015-01 |
dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.sinia.none.fl_str_mv |
text/publicacion cientifica |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/57 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 0746 0446 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1175/JHM-D-14-0197.1 |
dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/57 https://hdl.handle.net/20.500.12542/57 |
url |
https://hdl.handle.net/20.500.12542/57 https://doi.org/10.1175/JHM-D-14-0197.1 |
identifier_str_mv |
0000 0001 0746 0446 |
dc.language.iso.en_US.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1525-755X |
dc.relation.uri.none.fl_str_mv |
https://journals.ametsoc.org/view/journals/hydr/16/5/jhm-d-14-0197_1.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.es_PE.fl_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América http://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.en_US.fl_str_mv |
American Meteorological Society |
dc.source.es_PE.fl_str_mv |
Servicio Nacional de Meteorología e Hidrología del Perú Repositorio Institucional - SENAMHI |
dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
instacron_str |
SENAMHI |
institution |
SENAMHI |
reponame_str |
SENAMHI-Institucional |
collection |
SENAMHI-Institucional |
dc.source.volume.none.fl_str_mv |
16 |
dc.source.issue.en_US.fl_str_mv |
5 |
dc.source.initialpage.en_US.fl_str_mv |
2153 |
dc.source.endpage.en_US.fl_str_mv |
2168 |
dc.source.journal.en_US.fl_str_mv |
Journal of Hydrometeorology |
bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/2/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/3/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/4/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/5/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 5a41b5acedcb4195a999ad8a55d5ae70 0be2376fc5983585c076c53ff0dddea7 f422ed5ddc0ee07abd5f8714e9270d8f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
_version_ |
1819063803764015104 |
spelling |
Nerini, D.Zulkafli, Z.Wang, L.-P.Onof, C.Buytaert, W.Lavado-Casimiro, W.Guyot, J.L.2019-07-22T14:39:59Z2019-07-22T14:39:59Z2015-01https://hdl.handle.net/20.500.12542/570000 0001 0746 0446https://doi.org/10.1175/JHM-D-14-0197.1https://hdl.handle.net/20.500.12542/57https://hdl.handle.net/20.500.12542/57This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hydrological modeling. It is found that the double-kernel smoothing method delivered the most consistent improvement over the original satellite product in both the cross-validation and hydrological evaluation. The mean bias correction also improved hydrological performance scores, particularly at the subbasin scale where the rain gauge density is higher. Given the spatial heterogeneity of the climate, the size of the modeled catchment, and the sparsity of data, it is concluded that nonparametric merging methods can perform as well as or better than more complex geostatistical methods, whose assumptions may not hold under the studied conditions. Based on these results, a systematic approach to the selection of a satellite-rain gauge data merging technique is proposed that is based on data characteristics. Finally, the underperformance of an ordinary kriging interpolation of the rain gauge data, compared to TMPA and other merged products, supports the use of satellite-based products over gridded rain gauge products that utilize sparse data for hydrological modeling at large scales.Por paresapplication/pdfengAmerican Meteorological Societyurn:issn:1525-755Xhttps://journals.ametsoc.org/view/journals/hydr/16/5/jhm-d-14-0197_1.xmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-sa/3.0/us/Servicio Nacional de Meteorología e Hidrología del PerúRepositorio Institucional - SENAMHI16521532168Journal of Hydrometeorologyreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIAmazoniaHydrologic modelsPrecipitaciónSatellite observationsStatistical techniquesSurface observationshttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Clima y Eventos NaturalesA comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applicationsinfo:eu-repo/semantics/articletext/publicacion cientificaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdfA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdfTexto Completoapplication/pdf2674419http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/3/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf5a41b5acedcb4195a999ad8a55d5ae70MD53TEXTA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.txtA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.txtExtracted texttext/plain54385http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/4/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.txt0be2376fc5983585c076c53ff0dddea7MD54THUMBNAILA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.jpgA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.jpgGenerated Thumbnailimage/jpeg6959http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/5/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.jpgf422ed5ddc0ee07abd5f8714e9270d8fMD5520.500.12542/57oai:repositorio.senamhi.gob.pe:20.500.12542/572024-12-13 17:10:25.879Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.873067 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).