A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications

Descripción del Articulo

This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product...

Descripción completa

Detalles Bibliográficos
Autores: Nerini, D., Zulkafli, Z., Wang, L.-P., Onof, C., Buytaert, W., Lavado-Casimiro, W., Guyot, J.L.
Formato: artículo
Fecha de Publicación:2015
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/57
Enlace del recurso:https://hdl.handle.net/20.500.12542/57
https://doi.org/10.1175/JHM-D-14-0197.1
Nivel de acceso:acceso abierto
Materia:Amazonia
Hydrologic models
Precipitación
Satellite observations
Statistical techniques
Surface observations
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
id SEAM_0337e439942e1cc6d172a67ed4124ae2
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/57
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.en_US.fl_str_mv A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
title A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
spellingShingle A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
Nerini, D.
Amazonia
Hydrologic models
Precipitación
Satellite observations
Statistical techniques
Surface observations
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
title_short A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
title_full A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
title_fullStr A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
title_full_unstemmed A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
title_sort A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications
author Nerini, D.
author_facet Nerini, D.
Zulkafli, Z.
Wang, L.-P.
Onof, C.
Buytaert, W.
Lavado-Casimiro, W.
Guyot, J.L.
author_role author
author2 Zulkafli, Z.
Wang, L.-P.
Onof, C.
Buytaert, W.
Lavado-Casimiro, W.
Guyot, J.L.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Nerini, D.
Zulkafli, Z.
Wang, L.-P.
Onof, C.
Buytaert, W.
Lavado-Casimiro, W.
Guyot, J.L.
dc.subject.es_PE.fl_str_mv Amazonia
topic Amazonia
Hydrologic models
Precipitación
Satellite observations
Statistical techniques
Surface observations
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
dc.subject.en_US.fl_str_mv Hydrologic models
Precipitación
Satellite observations
Statistical techniques
Surface observations
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.none.fl_str_mv precipitacion - Clima y Eventos Naturales
description This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hydrological modeling. It is found that the double-kernel smoothing method delivered the most consistent improvement over the original satellite product in both the cross-validation and hydrological evaluation. The mean bias correction also improved hydrological performance scores, particularly at the subbasin scale where the rain gauge density is higher. Given the spatial heterogeneity of the climate, the size of the modeled catchment, and the sparsity of data, it is concluded that nonparametric merging methods can perform as well as or better than more complex geostatistical methods, whose assumptions may not hold under the studied conditions. Based on these results, a systematic approach to the selection of a satellite-rain gauge data merging technique is proposed that is based on data characteristics. Finally, the underperformance of an ordinary kriging interpolation of the rain gauge data, compared to TMPA and other merged products, supports the use of satellite-based products over gridded rain gauge products that utilize sparse data for hydrological modeling at large scales.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2019-07-22T14:39:59Z
dc.date.available.none.fl_str_mv 2019-07-22T14:39:59Z
dc.date.issued.fl_str_mv 2015-01
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.none.fl_str_mv text/publicacion cientifica
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/57
dc.identifier.isni.none.fl_str_mv 0000 0001 0746 0446
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1175/JHM-D-14-0197.1
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/57
https://hdl.handle.net/20.500.12542/57
url https://hdl.handle.net/20.500.12542/57
https://doi.org/10.1175/JHM-D-14-0197.1
identifier_str_mv 0000 0001 0746 0446
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1525-755X
dc.relation.uri.none.fl_str_mv https://journals.ametsoc.org/view/journals/hydr/16/5/jhm-d-14-0197_1.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.es_PE.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.none.fl_str_mv application/pdf
dc.publisher.en_US.fl_str_mv American Meteorological Society
dc.source.es_PE.fl_str_mv Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio Institucional - SENAMHI
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
dc.source.volume.none.fl_str_mv 16
dc.source.issue.en_US.fl_str_mv 5
dc.source.initialpage.en_US.fl_str_mv 2153
dc.source.endpage.en_US.fl_str_mv 2168
dc.source.journal.en_US.fl_str_mv Journal of Hydrometeorology
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/2/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/3/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/4/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/5/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
5a41b5acedcb4195a999ad8a55d5ae70
0be2376fc5983585c076c53ff0dddea7
f422ed5ddc0ee07abd5f8714e9270d8f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1819063803764015104
spelling Nerini, D.Zulkafli, Z.Wang, L.-P.Onof, C.Buytaert, W.Lavado-Casimiro, W.Guyot, J.L.2019-07-22T14:39:59Z2019-07-22T14:39:59Z2015-01https://hdl.handle.net/20.500.12542/570000 0001 0746 0446https://doi.org/10.1175/JHM-D-14-0197.1https://hdl.handle.net/20.500.12542/57https://hdl.handle.net/20.500.12542/57This study compares two nonparametric rainfall data merging methods-the mean bias correction and double-kernel smoothing-with two geostatistical methods-kriging with external drift and Bayesian combination-for optimizing the hydrometeorological performance of a satellite-based precipitation product over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hydrological modeling. It is found that the double-kernel smoothing method delivered the most consistent improvement over the original satellite product in both the cross-validation and hydrological evaluation. The mean bias correction also improved hydrological performance scores, particularly at the subbasin scale where the rain gauge density is higher. Given the spatial heterogeneity of the climate, the size of the modeled catchment, and the sparsity of data, it is concluded that nonparametric merging methods can perform as well as or better than more complex geostatistical methods, whose assumptions may not hold under the studied conditions. Based on these results, a systematic approach to the selection of a satellite-rain gauge data merging technique is proposed that is based on data characteristics. Finally, the underperformance of an ordinary kriging interpolation of the rain gauge data, compared to TMPA and other merged products, supports the use of satellite-based products over gridded rain gauge products that utilize sparse data for hydrological modeling at large scales.Por paresapplication/pdfengAmerican Meteorological Societyurn:issn:1525-755Xhttps://journals.ametsoc.org/view/journals/hydr/16/5/jhm-d-14-0197_1.xmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-sa/3.0/us/Servicio Nacional de Meteorología e Hidrología del PerúRepositorio Institucional - SENAMHI16521532168Journal of Hydrometeorologyreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIAmazoniaHydrologic modelsPrecipitaciónSatellite observationsStatistical techniquesSurface observationshttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Clima y Eventos NaturalesA comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applicationsinfo:eu-repo/semantics/articletext/publicacion cientificaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdfA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdfTexto Completoapplication/pdf2674419http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/3/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf5a41b5acedcb4195a999ad8a55d5ae70MD53TEXTA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.txtA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.txtExtracted texttext/plain54385http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/4/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.txt0be2376fc5983585c076c53ff0dddea7MD54THUMBNAILA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.jpgA-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall–Runoff-Modeling-Applications.pdf.jpgGenerated Thumbnailimage/jpeg6959http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/57/5/A-Comparative-Analysis-of-TRMM-Rain-Gauge-Data-Merging-Techniques-at-the-Daily-Time-Scale-for-Distributed-Rainfall%e2%80%93Runoff-Modeling-Applications.pdf.jpgf422ed5ddc0ee07abd5f8714e9270d8fMD5520.500.12542/57oai:repositorio.senamhi.gob.pe:20.500.12542/572024-12-13 17:10:25.879Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.873067
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).