Modelo de inteligencia artificial con fines de predicción del CBR en obras viales en la región Huánuco, 2024
Descripción del Articulo
Objetivo: Determinar qué modelo de inteligencia artificial permite la predicción del CBR en obras viales en la región Huánuco, 2024. Método: La investigación es aplicada, cuantitativo, explicativo y experimental. La población, suelos a nivel de subrasante de obras viales de la macro región centro. L...
| Autor: | |
|---|---|
| Formato: | tesis doctoral |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional Federico Villarreal |
| Repositorio: | UNFV-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.unfv.edu.pe:20.500.13084/11498 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13084/11498 |
| Nivel de acceso: | acceso abierto |
| Materia: | Desarrollo urbano-rural, catastro, prevención de riesgos, hidráulica y geotecnia Redes neuronales Máquina de soporte vectorial Propiedades físicas Propiedades mecánicas Litoestratigrafía https://purl.org/pe-repo/ocde/ford#2.01.01 |
| Sumario: | Objetivo: Determinar qué modelo de inteligencia artificial permite la predicción del CBR en obras viales en la región Huánuco, 2024. Método: La investigación es aplicada, cuantitativo, explicativo y experimental. La población, suelos a nivel de subrasante de obras viales de la macro región centro. La muestra, datos recolectados de mecánica de suelos y geotecnia de la región Huánuco; muestreo no probabilístico, por conveniencia; recopilándose total 2270 puntos de caracterización de suelos, 1365 puntos datos completos, incluyen CBR. Se analizó mediante Python, redes neuronales artificiales, recurrentes LSTM, recurrentes GRU, algoritmos de Ramdom Forest y Support vector machine; datos limpios se estandarizaron, dividiéndolos en 80% entrenamiento, 10% validación y 10% prueba; se aleatorizó datos(3372), se sintetizó datos(3372), data ampliada para mayor precisión en la predicción. Se desarrolló una interfaz, recopila datos variables y a la vez predice CBRs. Mediante el ArcGIS se generó mapas geoespaciales de distribución. Resultados: Se determinó que la Red Neuronal Artificial tiene mayor grado de precisión en predicción, con R2 de 0.9848, MAE de 0.8195, MSE de 1.9198 y RMSE de 1.3856. Se estableció una interfaz de buen desempeño, recopila datos y predice CBRs. Se generó información con ArcGIS, evidenciando que la máxima densidad seca, Humedad Óptima y el porcentaje de arena, son variables influyentes en la predicción del CBR. Conclusión: La principal conclusión es que el modelo de Redes Neuronales Artificiales logra predecir el CBR con alta precisión a partir de variables físicas y mecánicas de los suelos de subrasantes en obras viales. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).