Redes neuronales para predicción de contaminación del aire en Carabayllo-Lima

Descripción del Articulo

En el presente trabajo se desarrolla un modelo de pronóstico capaz de predecir (con múltiples etapas adelantadas) el comportamiento de las variables de contaminación ambiental de material particulado PM2.5 mediante el uso de los datos de concentraciones de contaminantes de material particulado (PM2....

Descripción completa

Detalles Bibliográficos
Autor: Jacinto Herrera, Raúl Trinidad
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Universidad Nacional Federico Villarreal
Repositorio:UNFV-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unfv.edu.pe:20.500.13084/3428
Enlace del recurso:https://hdl.handle.net/20.500.13084/3428
Nivel de acceso:acceso abierto
Materia:Redes neuronales artificiales; Retropropagación; Perceptrón multicapa; Series de tiempo; Contaminación del aire; Material particulado; Carabayllo
Ingeniería y Tecnologia
Descripción
Sumario:En el presente trabajo se desarrolla un modelo de pronóstico capaz de predecir (con múltiples etapas adelantadas) el comportamiento de las variables de contaminación ambiental de material particulado PM2.5 mediante el uso de los datos de concentraciones de contaminantes de material particulado (PM2.5 y PM10) y químicos (CO, SO2, NO) producidos en la estación automatizada de calidad de aire de Carabayllo. El modelo ha sido entrenado, con datos reales de la estación automatizada de calidad de aire del distrito de Carabayllo en el intervalo de 2 años, sobre tres diferentes algoritmos de retropropagación y dos modelos de neuronas en una única capa oculta para hallar parámetros de un modelo óptimo de predicción. Experimentalmente se probaron 6 modelos de redes sobre un rango de número de neuronas. La red optimizada fue aplicada sobre un grupo de 72 datos de prueba obteniendo resultados del modelo con un error porcentual medio de -0.1089% lo cual indica un pronóstico preciso para el caso de estudio. Un aporte de esta investigación es la demostración de que el modelo basado en redes neuronales artificiales es capaz de pronosticar variables de contaminación ambiental de material particulado con buena precisión y en una forma sencilla. Asimismo, el modelo se puede adaptar tanto para pronosticar otros contaminantes del aire (químicos o material particulado) como para datos generados en otras estaciones automatizadas de calidad de aire.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).