Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
Descripción del Articulo
Staff turnover in large Peruvian manufacturing industries has been increasing in recent years. While job rotation is a natural effect in organizations, it generates higher training costs for new staff and impacts work performance and climate when unwanted. Given this problem arises the need to ident...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/20339 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/20339 |
| Nivel de acceso: | acceso abierto |
| Materia: | https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
RULI_de3ad1da07ccfa8ee864dea287fd01f6 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/20339 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.en_EN.fl_str_mv |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| title |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| spellingShingle |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection Romero Rojas, Erika Noemi https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| title_full |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| title_fullStr |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| title_full_unstemmed |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| title_sort |
Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection |
| author |
Romero Rojas, Erika Noemi |
| author_facet |
Romero Rojas, Erika Noemi |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Quiroz Flores, Juan Carlos |
| dc.contributor.author.fl_str_mv |
Romero Rojas, Erika Noemi |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| topic |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
Staff turnover in large Peruvian manufacturing industries has been increasing in recent years. While job rotation is a natural effect in organizations, it generates higher training costs for new staff and impacts work performance and climate when unwanted. Given this problem arises the need to identify the possible causes of rotation of operational personnel and predict these events through data analysis at an early stage to avoid and reduce its impact on the company. This article of quantitative approach and exploratory scope-explanatory aims to identify the propensity of rotation of the operation of a company manufacturing cleaning and disinfection through a model of forecast by collecting data using Machine Learning and encourage proposals that enable solutions to be found to the factors influencing staff turnover. MS Excel and Orange software were used for data analysis, where the data were trained with different intelligence models such as Random Forest, Logistic Regression, Decision Tree, and SVM, and Python to run the model and get numerical indicators like the Area under the curve (AUC) and the analysis of the ROC curve. The proposed study shows that the models perform well in classification, with high accuracy and recall rates, 96% and 97%, respectively, and an overall accuracy of 96%. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-07T20:34:57Z |
| dc.date.available.none.fl_str_mv |
2024-05-07T20:34:57Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.other.none.fl_str_mv |
Tesis |
| format |
bachelorThesis |
| dc.identifier.citation.es_PE.fl_str_mv |
Romero Rojas, E. N. (2024). Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20339 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/20339 |
| dc.identifier.isni.none.fl_str_mv |
121541816 |
| identifier_str_mv |
Romero Rojas, E. N. (2024). Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20339 121541816 |
| url |
https://hdl.handle.net/20.500.12724/20339 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad de Lima |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/4/T018_74582636_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/6/FA_74582636_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/8/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/5/T018_74582636_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/7/FA_74582636_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/9/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/1/T018_74582636_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/2/FA_74582636_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/3/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf |
| bitstream.checksum.fl_str_mv |
0fb8c4bb1caf054faca51e55512fb760 ccadcf2773462916de58f73872e42f4b aed25b5a95d1f050d8cc21269ed8c5c5 c242387428733fc97ab9d2ba63240cc9 db71df424e84f14bed5fbf55625a87bb 24b595180e68f425242217611e6e2e4d 855f919f7315982c09cbb36cf81fa064 b3c9b9d49201ccc3e1b789e94cedc653 8d829a20e9c2c202d708f73e125f7f6c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1846612300354551808 |
| spelling |
Quiroz Flores, Juan CarlosRomero Rojas, Erika Noemi2024-05-07T20:34:57Z2024-05-07T20:34:57Z2024Romero Rojas, E. N. (2024). Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20339https://hdl.handle.net/20.500.12724/20339121541816Staff turnover in large Peruvian manufacturing industries has been increasing in recent years. While job rotation is a natural effect in organizations, it generates higher training costs for new staff and impacts work performance and climate when unwanted. Given this problem arises the need to identify the possible causes of rotation of operational personnel and predict these events through data analysis at an early stage to avoid and reduce its impact on the company. This article of quantitative approach and exploratory scope-explanatory aims to identify the propensity of rotation of the operation of a company manufacturing cleaning and disinfection through a model of forecast by collecting data using Machine Learning and encourage proposals that enable solutions to be found to the factors influencing staff turnover. MS Excel and Orange software were used for data analysis, where the data were trained with different intelligence models such as Random Forest, Logistic Regression, Decision Tree, and SVM, and Python to run the model and get numerical indicators like the Area under the curve (AUC) and the analysis of the ROC curve. The proposed study shows that the models perform well in classification, with high accuracy and recall rates, 96% and 97%, respectively, and an overall accuracy of 96%.La rotación de personal en las grandes industrias peruanas de manufactura ha venido incrementando en los últimos años. Si bien la rotación laboral es un efecto natural en las organizaciones, cuando es no deseada genera mayores costos de entrenamiento para el nuevo personal e impacta en el desempeño y clima laboral. Ante esta problemática nace la necesidad de poder identificar las posibles causas de rotación del personal operativo y predecir estos sucesos a través del análisis de datos en una etapa temprana para evitar y/o reducir su impacto en la compañía. El presente artículo de enfoque cuantitativo y alcance exploratorio–explicativo tiene como objetivo principal determinar los factores que influencian en la rotación de personal operativo de una empresa de manufactura del rubro de limpieza y desinfección a través de la recolección de datos empleando Machine Learning y fomentar propuestas que permitan dar soluciones ante la rotación de personal. Para el análisis de datos se empleó el software Orange, en donde los datos fueron entrenados con diferentes modelos de inteligencia como Random Forest, Logistic Regression, Decision Tree, y SCV, y Python para correr el modelo y obtener indicadores numéricos como el Área bajo la curva (AUC) y el análisis de la curva ROC. El estudio propuesto muestra que los modelos tienen un buen desempeño en la clasificación, con altas tasas de precisión y recall, 96% y 97% respectivamente, así como una exactitud general del 96%.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMATechniques of machine learning applied to reduce employee turnover in a company cleaning and disinfectioninfo:eu-repo/semantics/bachelorThesisTesishttps://purl.org/pe-repo/ocde/ford#2.11.04SUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-41231030028572202674582636https://purl.org/pe-repo/renati/level#tituloProfesionalFlores Pérez, Alberto EnriqueSantos Figueroa, Luis EnriqueQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOITEXTT018_74582636_T.pdf.txtT018_74582636_T.pdf.txtExtracted texttext/plain14531https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/4/T018_74582636_T.pdf.txt0fb8c4bb1caf054faca51e55512fb760MD54FA_74582636_SR.pdf.txtFA_74582636_SR.pdf.txtExtracted texttext/plain2547https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/6/FA_74582636_SR.pdf.txtccadcf2773462916de58f73872e42f4bMD56TURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.txtTURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.txtExtracted texttext/plain690https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/8/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.txtaed25b5a95d1f050d8cc21269ed8c5c5MD58THUMBNAILT018_74582636_T.pdf.jpgT018_74582636_T.pdf.jpgGenerated Thumbnailimage/jpeg10160https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/5/T018_74582636_T.pdf.jpgc242387428733fc97ab9d2ba63240cc9MD55FA_74582636_SR.pdf.jpgFA_74582636_SR.pdf.jpgGenerated Thumbnailimage/jpeg15974https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/7/FA_74582636_SR.pdf.jpgdb71df424e84f14bed5fbf55625a87bbMD57TURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.jpgTURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.jpgGenerated Thumbnailimage/jpeg8109https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/9/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.jpg24b595180e68f425242217611e6e2e4dMD59ORIGINALT018_74582636_T.pdfT018_74582636_T.pdfTesisapplication/pdf242142https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/1/T018_74582636_T.pdf855f919f7315982c09cbb36cf81fa064MD51FA_74582636_SR.pdfFA_74582636_SR.pdfAutorizaciónapplication/pdf215854https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/2/FA_74582636_SR.pdfb3c9b9d49201ccc3e1b789e94cedc653MD52TURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdfTURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdfReporte de similitudapplication/pdf1306580https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/3/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf8d829a20e9c2c202d708f73e125f7f6cMD5320.500.12724/20339oai:repositorio.ulima.edu.pe:20.500.12724/203392025-09-18 08:06:26.431Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| score |
13.057984 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).