Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection

Descripción del Articulo

Staff turnover in large Peruvian manufacturing industries has been increasing in recent years. While job rotation is a natural effect in organizations, it generates higher training costs for new staff and impacts work performance and climate when unwanted. Given this problem arises the need to ident...

Descripción completa

Detalles Bibliográficos
Autor: Romero Rojas, Erika Noemi
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/20339
Enlace del recurso:https://hdl.handle.net/20.500.12724/20339
Nivel de acceso:acceso abierto
Materia:https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_de3ad1da07ccfa8ee864dea287fd01f6
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/20339
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
title Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
spellingShingle Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
Romero Rojas, Erika Noemi
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
title_full Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
title_fullStr Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
title_full_unstemmed Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
title_sort Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection
author Romero Rojas, Erika Noemi
author_facet Romero Rojas, Erika Noemi
author_role author
dc.contributor.advisor.fl_str_mv Quiroz Flores, Juan Carlos
dc.contributor.author.fl_str_mv Romero Rojas, Erika Noemi
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
topic https://purl.org/pe-repo/ocde/ford#2.11.04
description Staff turnover in large Peruvian manufacturing industries has been increasing in recent years. While job rotation is a natural effect in organizations, it generates higher training costs for new staff and impacts work performance and climate when unwanted. Given this problem arises the need to identify the possible causes of rotation of operational personnel and predict these events through data analysis at an early stage to avoid and reduce its impact on the company. This article of quantitative approach and exploratory scope-explanatory aims to identify the propensity of rotation of the operation of a company manufacturing cleaning and disinfection through a model of forecast by collecting data using Machine Learning and encourage proposals that enable solutions to be found to the factors influencing staff turnover. MS Excel and Orange software were used for data analysis, where the data were trained with different intelligence models such as Random Forest, Logistic Regression, Decision Tree, and SVM, and Python to run the model and get numerical indicators like the Area under the curve (AUC) and the analysis of the ROC curve. The proposed study shows that the models perform well in classification, with high accuracy and recall rates, 96% and 97%, respectively, and an overall accuracy of 96%.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-07T20:34:57Z
dc.date.available.none.fl_str_mv 2024-05-07T20:34:57Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Romero Rojas, E. N. (2024). Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20339
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/20339
dc.identifier.isni.none.fl_str_mv 121541816
identifier_str_mv Romero Rojas, E. N. (2024). Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20339
121541816
url https://hdl.handle.net/20.500.12724/20339
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/4/T018_74582636_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/6/FA_74582636_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/8/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/5/T018_74582636_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/7/FA_74582636_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/9/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/1/T018_74582636_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/2/FA_74582636_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/3/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf
bitstream.checksum.fl_str_mv 0fb8c4bb1caf054faca51e55512fb760
ccadcf2773462916de58f73872e42f4b
aed25b5a95d1f050d8cc21269ed8c5c5
c242387428733fc97ab9d2ba63240cc9
db71df424e84f14bed5fbf55625a87bb
24b595180e68f425242217611e6e2e4d
855f919f7315982c09cbb36cf81fa064
b3c9b9d49201ccc3e1b789e94cedc653
8d829a20e9c2c202d708f73e125f7f6c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1846612300354551808
spelling Quiroz Flores, Juan CarlosRomero Rojas, Erika Noemi2024-05-07T20:34:57Z2024-05-07T20:34:57Z2024Romero Rojas, E. N. (2024). Techniques of machine learning applied to reduce employee turnover in a company cleaning and disinfection [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20339https://hdl.handle.net/20.500.12724/20339121541816Staff turnover in large Peruvian manufacturing industries has been increasing in recent years. While job rotation is a natural effect in organizations, it generates higher training costs for new staff and impacts work performance and climate when unwanted. Given this problem arises the need to identify the possible causes of rotation of operational personnel and predict these events through data analysis at an early stage to avoid and reduce its impact on the company. This article of quantitative approach and exploratory scope-explanatory aims to identify the propensity of rotation of the operation of a company manufacturing cleaning and disinfection through a model of forecast by collecting data using Machine Learning and encourage proposals that enable solutions to be found to the factors influencing staff turnover. MS Excel and Orange software were used for data analysis, where the data were trained with different intelligence models such as Random Forest, Logistic Regression, Decision Tree, and SVM, and Python to run the model and get numerical indicators like the Area under the curve (AUC) and the analysis of the ROC curve. The proposed study shows that the models perform well in classification, with high accuracy and recall rates, 96% and 97%, respectively, and an overall accuracy of 96%.La rotación de personal en las grandes industrias peruanas de manufactura ha venido incrementando en los últimos años. Si bien la rotación laboral es un efecto natural en las organizaciones, cuando es no deseada genera mayores costos de entrenamiento para el nuevo personal e impacta en el desempeño y clima laboral. Ante esta problemática nace la necesidad de poder identificar las posibles causas de rotación del personal operativo y predecir estos sucesos a través del análisis de datos en una etapa temprana para evitar y/o reducir su impacto en la compañía. El presente artículo de enfoque cuantitativo y alcance exploratorio–explicativo tiene como objetivo principal determinar los factores que influencian en la rotación de personal operativo de una empresa de manufactura del rubro de limpieza y desinfección a través de la recolección de datos empleando Machine Learning y fomentar propuestas que permitan dar soluciones ante la rotación de personal. Para el análisis de datos se empleó el software Orange, en donde los datos fueron entrenados con diferentes modelos de inteligencia como Random Forest, Logistic Regression, Decision Tree, y SCV, y Python para correr el modelo y obtener indicadores numéricos como el Área bajo la curva (AUC) y el análisis de la curva ROC. El estudio propuesto muestra que los modelos tienen un buen desempeño en la clasificación, con altas tasas de precisión y recall, 96% y 97% respectivamente, así como una exactitud general del 96%.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMATechniques of machine learning applied to reduce employee turnover in a company cleaning and disinfectioninfo:eu-repo/semantics/bachelorThesisTesishttps://purl.org/pe-repo/ocde/ford#2.11.04SUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-41231030028572202674582636https://purl.org/pe-repo/renati/level#tituloProfesionalFlores Pérez, Alberto EnriqueSantos Figueroa, Luis EnriqueQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOITEXTT018_74582636_T.pdf.txtT018_74582636_T.pdf.txtExtracted texttext/plain14531https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/4/T018_74582636_T.pdf.txt0fb8c4bb1caf054faca51e55512fb760MD54FA_74582636_SR.pdf.txtFA_74582636_SR.pdf.txtExtracted texttext/plain2547https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/6/FA_74582636_SR.pdf.txtccadcf2773462916de58f73872e42f4bMD56TURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.txtTURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.txtExtracted texttext/plain690https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/8/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.txtaed25b5a95d1f050d8cc21269ed8c5c5MD58THUMBNAILT018_74582636_T.pdf.jpgT018_74582636_T.pdf.jpgGenerated Thumbnailimage/jpeg10160https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/5/T018_74582636_T.pdf.jpgc242387428733fc97ab9d2ba63240cc9MD55FA_74582636_SR.pdf.jpgFA_74582636_SR.pdf.jpgGenerated Thumbnailimage/jpeg15974https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/7/FA_74582636_SR.pdf.jpgdb71df424e84f14bed5fbf55625a87bbMD57TURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.jpgTURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdf.jpgGenerated Thumbnailimage/jpeg8109https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/9/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf.jpg24b595180e68f425242217611e6e2e4dMD59ORIGINALT018_74582636_T.pdfT018_74582636_T.pdfTesisapplication/pdf242142https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/1/T018_74582636_T.pdf855f919f7315982c09cbb36cf81fa064MD51FA_74582636_SR.pdfFA_74582636_SR.pdfAutorizaciónapplication/pdf215854https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/2/FA_74582636_SR.pdfb3c9b9d49201ccc3e1b789e94cedc653MD52TURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdfTURNITIN_ROMERO ROJAS ERIKA NOEMI_20162488.pdfReporte de similitudapplication/pdf1306580https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20339/3/TURNITIN_ROMERO%20ROJAS%20ERIKA%20NOEMI_20162488.pdf8d829a20e9c2c202d708f73e125f7f6cMD5320.500.12724/20339oai:repositorio.ulima.edu.pe:20.500.12724/203392025-09-18 08:06:26.431Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.057984
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).