Machine learning applied to milk sample classification
Descripción del Articulo
The document presents the results of the evaluation of the classification process of milk samples through the modeling of machine learning techniques. The objective of this research was to discriminate the presence or absence of adulterants, which allowed obtaining adequate damages for human consump...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/21891 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/21891 |
| Nivel de acceso: | acceso abierto |
| Materia: | Leche Adulteración e inspección de alimentos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
RULI_dc04c689ce53effdff70db21289ab2c2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/21891 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.en_EN.fl_str_mv |
Machine learning applied to milk sample classification |
| title |
Machine learning applied to milk sample classification |
| spellingShingle |
Machine learning applied to milk sample classification Leon Loyola, Mia Leonarda Leche Adulteración e inspección de alimentos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Machine learning applied to milk sample classification |
| title_full |
Machine learning applied to milk sample classification |
| title_fullStr |
Machine learning applied to milk sample classification |
| title_full_unstemmed |
Machine learning applied to milk sample classification |
| title_sort |
Machine learning applied to milk sample classification |
| author |
Leon Loyola, Mia Leonarda |
| author_facet |
Leon Loyola, Mia Leonarda Ossa De La Cruz, Diego Daniel |
| author_role |
author |
| author2 |
Ossa De La Cruz, Diego Daniel |
| author2_role |
author |
| dc.contributor.advisor.fl_str_mv |
Taquía Gutiérrez, José Antonio |
| dc.contributor.author.fl_str_mv |
Leon Loyola, Mia Leonarda Ossa De La Cruz, Diego Daniel |
| dc.subject.es_PE.fl_str_mv |
Leche Adulteración e inspección de alimentos Aprendizaje automático |
| topic |
Leche Adulteración e inspección de alimentos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
The document presents the results of the evaluation of the classification process of milk samples through the modeling of machine learning techniques. The objective of this research was to discriminate the presence or absence of adulterants, which allowed obtaining adequate damages for human consumption. Also, speed up and specify the inspection process of said samples. The relevance of this study can be understood from the product under analysis: milk. This is for mass consumption, especially among children. Due to the above, it is considered relevant to efficiently demonstrate that quality products are provided to the population and this document is a contribution to the reliability of the integrity of dairy products. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2025-01-16T12:29:39Z |
| dc.date.available.none.fl_str_mv |
2025-01-16T12:29:39Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.other.none.fl_str_mv |
Tesis |
| format |
bachelorThesis |
| dc.identifier.citation.es_PE.fl_str_mv |
Leon Loyola, M. L. & Ossa De La Cruz, D. D. (2023). Machine learning applied to milk sample classification. [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21891 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/21891 |
| dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
| identifier_str_mv |
Leon Loyola, M. L. & Ossa De La Cruz, D. D. (2023). Machine learning applied to milk sample classification. [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21891 0000000121541816 |
| url |
https://hdl.handle.net/20.500.12724/21891 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad de Lima |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/4/T018_76379472_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/6/FA_76379472_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/8/TURNITIN_LEON%20LOYOLA%20MIA%20LEONARDA_20172282%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/1/T018_76379472_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/2/FA_76379472_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/3/TURNITIN_LEON%20LOYOLA%20MIA%20LEONARDA_20172282%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/5/T018_76379472_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/7/FA_76379472_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/9/TURNITIN_LEON%20LOYOLA%20MIA%20LEONARDA_20172282%20.pdf.jpg |
| bitstream.checksum.fl_str_mv |
7f2ca1db4b719b8ee906a48dec03687b bd8f3a81e3ae0387e9e5e44e702fac15 7c4b351b56af1a18e8a8eac9999b51ab f578826f776949dc1509c49d49d2ba72 035a0465b29683605485d69dbc4606a9 934e500e193732bc3f00c9b933bacb1e 4e556fd1758dd5d63c32180cb6b9b3dc 1905db52f159d5538b56c0edabc2a9cb c81f4f471e903cf79558e99dade7873e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1846612007052115968 |
| spelling |
Taquía Gutiérrez, José AntonioLeon Loyola, Mia LeonardaOssa De La Cruz, Diego Daniel2025-01-16T12:29:39Z2025-01-16T12:29:39Z2023Leon Loyola, M. L. & Ossa De La Cruz, D. D. (2023). Machine learning applied to milk sample classification. [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21891https://hdl.handle.net/20.500.12724/218910000000121541816The document presents the results of the evaluation of the classification process of milk samples through the modeling of machine learning techniques. The objective of this research was to discriminate the presence or absence of adulterants, which allowed obtaining adequate damages for human consumption. Also, speed up and specify the inspection process of said samples. The relevance of this study can be understood from the product under analysis: milk. This is for mass consumption, especially among children. Due to the above, it is considered relevant to efficiently demonstrate that quality products are provided to the population and this document is a contribution to the reliability of the integrity of dairy products.El documento presenta los resultados de la evaluación del proceso de clasificación de muestras de leche por medio de la modelación de técnicas de machine learning. Esta investigación tuvo como objetivo discriminar la presencia o ausencia de adulterantes, lo cual permita la obtención de lácteos adecuados para el consumo humano. Asimismo, acelerar y precisar el proceso de inspección de dichas muestras. La relevancia del presente estudio se puede comprender desde el producto sometido a análisis: la leche. Este es de consumo masivo, sobre todo, en público infantil. Por lo expuesto, se considera relevante demostrar de manera eficiente que se brinda productos de calidad a la población y este documento es un aporte a la credibilidad de la integridad de productos lácteos.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMALecheAdulteración e inspección de alimentosAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Machine learning applied to milk sample classificationinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0002-1711-6603099943707220267637947271850093https://purl.org/pe-repo/renati/level#tituloProfesionalUrbina Rivera, Carlos MedardoQuiroz Flores, Juan CarlosTaquía Gutiérrez, José Antoniohttps://purl.org/pe-repo/renati/type#tesisOITEXTT018_76379472_T.pdf.txtT018_76379472_T.pdf.txtExtracted texttext/plain13233https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/4/T018_76379472_T.pdf.txt7f2ca1db4b719b8ee906a48dec03687bMD54FA_76379472_SR.pdf.txtFA_76379472_SR.pdf.txtExtracted texttext/plain2575https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/6/FA_76379472_SR.pdf.txtbd8f3a81e3ae0387e9e5e44e702fac15MD56TURNITIN_LEON LOYOLA MIA LEONARDA_20172282 .pdf.txtTURNITIN_LEON LOYOLA MIA LEONARDA_20172282 .pdf.txtExtracted texttext/plain587https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/8/TURNITIN_LEON%20LOYOLA%20MIA%20LEONARDA_20172282%20.pdf.txt7c4b351b56af1a18e8a8eac9999b51abMD58ORIGINALT018_76379472_T.pdfT018_76379472_T.pdfTesisapplication/pdf233865https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/1/T018_76379472_T.pdff578826f776949dc1509c49d49d2ba72MD51FA_76379472_SR.pdfFA_76379472_SR.pdfAutorizaciónapplication/pdf218002https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/2/FA_76379472_SR.pdf035a0465b29683605485d69dbc4606a9MD52TURNITIN_LEON LOYOLA MIA LEONARDA_20172282 .pdfTURNITIN_LEON LOYOLA MIA LEONARDA_20172282 .pdfReporte de similitudapplication/pdf4173931https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/3/TURNITIN_LEON%20LOYOLA%20MIA%20LEONARDA_20172282%20.pdf934e500e193732bc3f00c9b933bacb1eMD53THUMBNAILT018_76379472_T.pdf.jpgT018_76379472_T.pdf.jpgGenerated Thumbnailimage/jpeg9355https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/5/T018_76379472_T.pdf.jpg4e556fd1758dd5d63c32180cb6b9b3dcMD55FA_76379472_SR.pdf.jpgFA_76379472_SR.pdf.jpgGenerated Thumbnailimage/jpeg16361https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/7/FA_76379472_SR.pdf.jpg1905db52f159d5538b56c0edabc2a9cbMD57TURNITIN_LEON LOYOLA MIA LEONARDA_20172282 .pdf.jpgTURNITIN_LEON LOYOLA MIA LEONARDA_20172282 .pdf.jpgGenerated Thumbnailimage/jpeg7025https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21891/9/TURNITIN_LEON%20LOYOLA%20MIA%20LEONARDA_20172282%20.pdf.jpgc81f4f471e903cf79558e99dade7873eMD5920.500.12724/21891oai:repositorio.ulima.edu.pe:20.500.12724/218912025-09-18 12:38:58.628Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| score |
13.0768795 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).