Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
Descripción del Articulo
Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the d...
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2020 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/11570 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/11570 https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020 |
Nivel de acceso: | acceso abierto |
Materia: | Imágenes hiperespectrales Reducción de dimensión (estadísticas) Redes neuronales (Informática) Hyperspectral Imaging Dimension reduction (statistics) Neural networks (Computer science) https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
RULI_c63a68546bf99b5f2adf5ed1352f1785 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/11570 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
title |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
spellingShingle |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification Ayma Quirita, Victor Hugo Imágenes hiperespectrales Reducción de dimensión (estadísticas) Redes neuronales (Informática) Hyperspectral Imaging Dimension reduction (statistics) Neural networks (Computer science) https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
title_full |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
title_fullStr |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
title_full_unstemmed |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
title_sort |
Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification |
author |
Ayma Quirita, Victor Hugo |
author_facet |
Ayma Quirita, Victor Hugo Ayma, V. A. Gutiérrez Cárdenas, Juan Manuel |
author_role |
author |
author2 |
Ayma, V. A. Gutiérrez Cárdenas, Juan Manuel |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
Ayma Quirita, Víctor Hugo Gutiérrez Cárdenas, Juan Manuel |
dc.contributor.author.fl_str_mv |
Ayma Quirita, Victor Hugo Ayma, V. A. Gutiérrez Cárdenas, Juan Manuel |
dc.subject.es_PE.fl_str_mv |
Imágenes hiperespectrales Reducción de dimensión (estadísticas) Redes neuronales (Informática) Hyperspectral Imaging Dimension reduction (statistics) Neural networks (Computer science) |
topic |
Imágenes hiperespectrales Reducción de dimensión (estadísticas) Redes neuronales (Informática) Hyperspectral Imaging Dimension reduction (statistics) Neural networks (Computer science) https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-18T19:25:02Z |
dc.date.available.none.fl_str_mv |
2020-09-18T19:25:02Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.other.none.fl_str_mv |
Artículo de conferencia en Scopus |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Ayma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/11570 |
dc.identifier.isni.none.fl_str_mv |
121541816 |
dc.identifier.event.none.fl_str_mv |
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85091155936 |
identifier_str_mv |
Ayma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020 121541816 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2-s2.0-85091155936 |
url |
https://hdl.handle.net/20.500.12724/11570 https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
The International Society for Photogrammetry and Remote Sensing |
dc.publisher.country.es_PE.fl_str_mv |
DE |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima |
dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/2/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/3/license.txt |
bitstream.checksum.fl_str_mv |
80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844710164306853888 |
spelling |
Ayma Quirita, Victor HugoAyma, V. A.Gutiérrez Cárdenas, Juan ManuelAyma Quirita, Víctor HugoGutiérrez Cárdenas, Juan Manuel2020-09-18T19:25:02Z2020-09-18T19:25:02Z2020Ayma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020https://hdl.handle.net/20.500.12724/11570121541816International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scienceshttps://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-20202-s2.0-85091155936Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.application/pdfengThe International Society for Photogrammetry and Remote SensingDEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAImágenes hiperespectralesReducción de dimensión (estadísticas)Redes neuronales (Informática)Hyperspectral ImagingDimension reduction (statistics)Neural networks (Computer science)https://purl.org/pe-repo/ocde/ford#2.02.04Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classificationinfo:eu-repo/semantics/conferenceObjectArtículo de conferencia en ScopusAyma Quirita, Víctor Hugo (Ingeniería de Sistemas)Gutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas)Ayma Quirita, Víctor Hugo (University of Lima)Gutiérrez Cárdenas, Juan Manuel (University of Lima)CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/11570oai:repositorio.ulima.edu.pe:20.500.12724/115702025-03-06 19:40:01.71Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.9067135 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).