Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification

Descripción del Articulo

Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the d...

Descripción completa

Detalles Bibliográficos
Autores: Ayma Quirita, Victor Hugo, Ayma, V. A., Gutiérrez Cárdenas, Juan Manuel
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/11570
Enlace del recurso:https://hdl.handle.net/20.500.12724/11570
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
Nivel de acceso:acceso abierto
Materia:Imágenes hiperespectrales
Reducción de dimensión (estadísticas)
Redes neuronales (Informática)
Hyperspectral Imaging
Dimension reduction (statistics)
Neural networks (Computer science)
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_c63a68546bf99b5f2adf5ed1352f1785
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/11570
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
title Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
spellingShingle Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
Ayma Quirita, Victor Hugo
Imágenes hiperespectrales
Reducción de dimensión (estadísticas)
Redes neuronales (Informática)
Hyperspectral Imaging
Dimension reduction (statistics)
Neural networks (Computer science)
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
title_full Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
title_fullStr Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
title_full_unstemmed Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
title_sort Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
author Ayma Quirita, Victor Hugo
author_facet Ayma Quirita, Victor Hugo
Ayma, V. A.
Gutiérrez Cárdenas, Juan Manuel
author_role author
author2 Ayma, V. A.
Gutiérrez Cárdenas, Juan Manuel
author2_role author
author
dc.contributor.other.none.fl_str_mv Ayma Quirita, Víctor Hugo
Gutiérrez Cárdenas, Juan Manuel
dc.contributor.author.fl_str_mv Ayma Quirita, Victor Hugo
Ayma, V. A.
Gutiérrez Cárdenas, Juan Manuel
dc.subject.es_PE.fl_str_mv Imágenes hiperespectrales
Reducción de dimensión (estadísticas)
Redes neuronales (Informática)
Hyperspectral Imaging
Dimension reduction (statistics)
Neural networks (Computer science)
topic Imágenes hiperespectrales
Reducción de dimensión (estadísticas)
Redes neuronales (Informática)
Hyperspectral Imaging
Dimension reduction (statistics)
Neural networks (Computer science)
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-18T19:25:02Z
dc.date.available.none.fl_str_mv 2020-09-18T19:25:02Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.other.none.fl_str_mv Artículo de conferencia en Scopus
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Ayma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/11570
dc.identifier.isni.none.fl_str_mv 121541816
dc.identifier.event.none.fl_str_mv International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85091155936
identifier_str_mv Ayma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
121541816
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
2-s2.0-85091155936
url https://hdl.handle.net/20.500.12724/11570
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv The International Society for Photogrammetry and Remote Sensing
dc.publisher.country.es_PE.fl_str_mv DE
dc.source.es_PE.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/3/license.txt
bitstream.checksum.fl_str_mv 80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844710164306853888
spelling Ayma Quirita, Victor HugoAyma, V. A.Gutiérrez Cárdenas, Juan ManuelAyma Quirita, Víctor HugoGutiérrez Cárdenas, Juan Manuel2020-09-18T19:25:02Z2020-09-18T19:25:02Z2020Ayma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020https://hdl.handle.net/20.500.12724/11570121541816International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scienceshttps://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-20202-s2.0-85091155936Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.application/pdfengThe International Society for Photogrammetry and Remote SensingDEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAImágenes hiperespectralesReducción de dimensión (estadísticas)Redes neuronales (Informática)Hyperspectral ImagingDimension reduction (statistics)Neural networks (Computer science)https://purl.org/pe-repo/ocde/ford#2.02.04Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classificationinfo:eu-repo/semantics/conferenceObjectArtículo de conferencia en ScopusAyma Quirita, Víctor Hugo (Ingeniería de Sistemas)Gutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas)Ayma Quirita, Víctor Hugo (University of Lima)Gutiérrez Cárdenas, Juan Manuel (University of Lima)CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11570/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/11570oai:repositorio.ulima.edu.pe:20.500.12724/115702025-03-06 19:40:01.71Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.9067135
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).