Gender biases in professions: a machine learning – powered search engines analysis

Descripción del Articulo

Machine learning is becoming increasingly important and pervasive in people's lives, yet when its conclusions reflect biases that support ingrained prejudices in society, many vulnerable groups' psychological wellbeing may be impacted. To investigate if gender biases exist in image search...

Descripción completa

Detalles Bibliográficos
Autores: Tirado Vilela, Nicolas Alejandro, Ueunten Acevedo, Adriana Maemi
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/22198
Enlace del recurso:https://hdl.handle.net/20.500.12724/22198
Nivel de acceso:acceso abierto
Materia:Profesiones
Buscadores de Internet
Incorporación de la perspectiva de género
Estereotipos (Psicología social)
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_bbf5667dd72bd67f21dd8bf65d5006df
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/22198
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Gender biases in professions: a machine learning – powered search engines analysis
title Gender biases in professions: a machine learning – powered search engines analysis
spellingShingle Gender biases in professions: a machine learning – powered search engines analysis
Tirado Vilela, Nicolas Alejandro
Profesiones
Buscadores de Internet
Incorporación de la perspectiva de género
Estereotipos (Psicología social)
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Gender biases in professions: a machine learning – powered search engines analysis
title_full Gender biases in professions: a machine learning – powered search engines analysis
title_fullStr Gender biases in professions: a machine learning – powered search engines analysis
title_full_unstemmed Gender biases in professions: a machine learning – powered search engines analysis
title_sort Gender biases in professions: a machine learning – powered search engines analysis
author Tirado Vilela, Nicolas Alejandro
author_facet Tirado Vilela, Nicolas Alejandro
Ueunten Acevedo, Adriana Maemi
author_role author
author2 Ueunten Acevedo, Adriana Maemi
author2_role author
dc.contributor.advisor.fl_str_mv Ruiz Ruiz, Marcos Fernando
dc.contributor.author.fl_str_mv Tirado Vilela, Nicolas Alejandro
Ueunten Acevedo, Adriana Maemi
dc.subject.es_PE.fl_str_mv Profesiones
Buscadores de Internet
Incorporación de la perspectiva de género
Estereotipos (Psicología social)
Algoritmos
Aprendizaje automático
topic Profesiones
Buscadores de Internet
Incorporación de la perspectiva de género
Estereotipos (Psicología social)
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description Machine learning is becoming increasingly important and pervasive in people's lives, yet when its conclusions reflect biases that support ingrained prejudices in society, many vulnerable groups' psychological wellbeing may be impacted. To investigate if gender biases exist in image search engine algorithms that use machine learning, the study focuses on occupations. To do this, searches for various professions were run on Google, DuckDuckGo, and Yandex. Using web scraping techniques, a sample of images was retrieved for each selected profession and search engine. The images were then manually classified by gender, and statistical indicators and analyses were computed to detect potential biases in the representation of each gender. This analysis included a comparison between search engines, the calculation of mean, standard deviation, and coefficient of variation, a confidence interval analysis, a logistic regression analysis, and a Chi-Square test. It was discovered that there is a strong association between men and leadership positions or STEM professions, while women are predominantly portrayed in traditionally female-associated professions. For instance, it was discovered that 100% of the search results for secretaries and nurses in Yandex are female, meanwhile 94% of the search results for engineers are male. Similar statistics may be found on DuckDuckGo, where 96% of results for mathematicians were men, and on Google, where 73% of results for teachers were women. These findings illuminate novel manifestations of gender prejudices in contemporary society and their potential to affect access to particular professions.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-02-10T23:23:30Z
dc.date.available.none.fl_str_mv 2025-02-10T23:23:30Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Tirado Vilela, N. A., & Ueunten Acevedo, A. M. (2024). Gender biases in professions: a machine learning – powered search engines analysis [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/22198
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/22198
dc.identifier.isni.none.fl_str_mv 0000000121541816
identifier_str_mv Tirado Vilela, N. A., & Ueunten Acevedo, A. M. (2024). Gender biases in professions: a machine learning – powered search engines analysis [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/22198
0000000121541816
url https://hdl.handle.net/20.500.12724/22198
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/1/T018_72927461_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/2/FA_72927461_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/3/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/4/T018_72927461_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/6/FA_72927461_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/8/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/5/T018_72927461_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/7/FA_72927461_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/9/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.jpg
bitstream.checksum.fl_str_mv a86672f70aec6db199c277f79a2114b7
a884a0787ced547e41f39a1c0217d097
8f672f863ab92a29a3faad377702f547
6a37761d5876790c1339b34354eb6c5a
a907322621f48f8104d2ad732977e8a5
4365906c93640527b38c2c0029363396
216637cac50c226e9b08c549a1bb6a19
66950c42083c69bfcd06e34924897432
c8029fa7060c3cd27d7aeca476430042
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844075884891340800
spelling Ruiz Ruiz, Marcos FernandoTirado Vilela, Nicolas AlejandroUeunten Acevedo, Adriana Maemi2025-02-10T23:23:30Z2025-02-10T23:23:30Z2024Tirado Vilela, N. A., & Ueunten Acevedo, A. M. (2024). Gender biases in professions: a machine learning – powered search engines analysis [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/22198https://hdl.handle.net/20.500.12724/221980000000121541816Machine learning is becoming increasingly important and pervasive in people's lives, yet when its conclusions reflect biases that support ingrained prejudices in society, many vulnerable groups' psychological wellbeing may be impacted. To investigate if gender biases exist in image search engine algorithms that use machine learning, the study focuses on occupations. To do this, searches for various professions were run on Google, DuckDuckGo, and Yandex. Using web scraping techniques, a sample of images was retrieved for each selected profession and search engine. The images were then manually classified by gender, and statistical indicators and analyses were computed to detect potential biases in the representation of each gender. This analysis included a comparison between search engines, the calculation of mean, standard deviation, and coefficient of variation, a confidence interval analysis, a logistic regression analysis, and a Chi-Square test. It was discovered that there is a strong association between men and leadership positions or STEM professions, while women are predominantly portrayed in traditionally female-associated professions. For instance, it was discovered that 100% of the search results for secretaries and nurses in Yandex are female, meanwhile 94% of the search results for engineers are male. Similar statistics may be found on DuckDuckGo, where 96% of results for mathematicians were men, and on Google, where 73% of results for teachers were women. These findings illuminate novel manifestations of gender prejudices in contemporary society and their potential to affect access to particular professions.El Machine Learning está adquiriendo cada vez más relevancia en la vida de las personas, pero cuando sus resultados reflejan sesgos sostenidos en prejuicios arraigados a la sociedad, el bienestar psicológico de múltiples grupos vulnerables puede verse afectado. Es por ello que la presente investigación tiene como objetivo determinar si existen sesgos de género en los algoritmos de motores de búsqueda de imágenes que utilizan Machine Learning. El estudio consistió en la búsqueda de diversas profesiones en Google, DuckDuckGo y Yandex. Utilizando técnicas de web scraping, se recuperó una muestra de imágenes para cada profesión seleccionada y motor de búsqueda. Posteriormente, las imágenes se clasificaron manualmente por género y mediante una serie de análisis estadísticos y cálculo de indicadores se comprobaron sesgos en la representación de cada género. Los análisis consistieron en una comparación de resultados entre los motores de búsqueda, cálculo de la media, desviación estándar y coeficiente de variación, análisis de intervalos de confianza, análisis de regresión logística y una prueba de Chi-Cuadrado. Se descubrió una fuerte asociación entre los hombres y los puestos de liderazgo o las profesiones STEM, mientras que las mujeres predominan en profesiones tradicionalmente asociadas a valores de cuidado y crianza (docencia, enfermería). Por ejemplo, se encontró que el 100% de los resultados de búsqueda para secretarias y enfermeras en Yandex son mujeres, mientras que el 94% de los resultados para ingenieros son hombres. Estadísticas similares se encontraron en DuckDuckGo, donde el 96% de los resultados para matemáticos eran hombres, y en Google, donde el 73% de los resultados para docentes eran mujeres. Estos hallazgos revelan manifestaciones de los prejuicios de género en la sociedad contemporánea y su potencial para afectar el acceso a determinadas profesiones.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAProfesionesBuscadores de InternetIncorporación de la perspectiva de géneroEstereotipos (Psicología social)AlgoritmosAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Gender biases in professions: a machine learning – powered search engines analysisinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0001-5147-8512100025057220267292746174067998https://purl.org/pe-repo/renati/level#tituloProfesionalUrbina Rivera, Carlos MedardoTaquia Gutiérrez, José AntonioRuiz Ruiz, Marcos Fernandohttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_72927461_T.pdfT018_72927461_T.pdfTesisapplication/pdf329720https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/1/T018_72927461_T.pdfa86672f70aec6db199c277f79a2114b7MD51FA_72927461_SR.pdfFA_72927461_SR.pdfAutorizaciónapplication/pdf216097https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/2/FA_72927461_SR.pdfa884a0787ced547e41f39a1c0217d097MD52TURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdfTURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdfReporte de similitudapplication/pdf2349921https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/3/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf8f672f863ab92a29a3faad377702f547MD53TEXTT018_72927461_T.pdf.txtT018_72927461_T.pdf.txtExtracted texttext/plain21288https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/4/T018_72927461_T.pdf.txt6a37761d5876790c1339b34354eb6c5aMD54FA_72927461_SR.pdf.txtFA_72927461_SR.pdf.txtExtracted texttext/plain2613https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/6/FA_72927461_SR.pdf.txta907322621f48f8104d2ad732977e8a5MD56TURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.txtTURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.txtExtracted texttext/plain65258https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/8/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.txt4365906c93640527b38c2c0029363396MD58THUMBNAILT018_72927461_T.pdf.jpgT018_72927461_T.pdf.jpgGenerated Thumbnailimage/jpeg10112https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/5/T018_72927461_T.pdf.jpg216637cac50c226e9b08c549a1bb6a19MD55FA_72927461_SR.pdf.jpgFA_72927461_SR.pdf.jpgGenerated Thumbnailimage/jpeg16328https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/7/FA_72927461_SR.pdf.jpg66950c42083c69bfcd06e34924897432MD57TURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.jpgTURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.jpgGenerated Thumbnailimage/jpeg8765https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/9/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.jpgc8029fa7060c3cd27d7aeca476430042MD5920.500.12724/22198oai:repositorio.ulima.edu.pe:20.500.12724/221982025-09-18 12:39:05.175Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.025769
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).