Gender biases in professions: a machine learning – powered search engines analysis
Descripción del Articulo
Machine learning is becoming increasingly important and pervasive in people's lives, yet when its conclusions reflect biases that support ingrained prejudices in society, many vulnerable groups' psychological wellbeing may be impacted. To investigate if gender biases exist in image search...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/22198 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/22198 |
Nivel de acceso: | acceso abierto |
Materia: | Profesiones Buscadores de Internet Incorporación de la perspectiva de género Estereotipos (Psicología social) Algoritmos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_bbf5667dd72bd67f21dd8bf65d5006df |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/22198 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Gender biases in professions: a machine learning – powered search engines analysis |
title |
Gender biases in professions: a machine learning – powered search engines analysis |
spellingShingle |
Gender biases in professions: a machine learning – powered search engines analysis Tirado Vilela, Nicolas Alejandro Profesiones Buscadores de Internet Incorporación de la perspectiva de género Estereotipos (Psicología social) Algoritmos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Gender biases in professions: a machine learning – powered search engines analysis |
title_full |
Gender biases in professions: a machine learning – powered search engines analysis |
title_fullStr |
Gender biases in professions: a machine learning – powered search engines analysis |
title_full_unstemmed |
Gender biases in professions: a machine learning – powered search engines analysis |
title_sort |
Gender biases in professions: a machine learning – powered search engines analysis |
author |
Tirado Vilela, Nicolas Alejandro |
author_facet |
Tirado Vilela, Nicolas Alejandro Ueunten Acevedo, Adriana Maemi |
author_role |
author |
author2 |
Ueunten Acevedo, Adriana Maemi |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
Ruiz Ruiz, Marcos Fernando |
dc.contributor.author.fl_str_mv |
Tirado Vilela, Nicolas Alejandro Ueunten Acevedo, Adriana Maemi |
dc.subject.es_PE.fl_str_mv |
Profesiones Buscadores de Internet Incorporación de la perspectiva de género Estereotipos (Psicología social) Algoritmos Aprendizaje automático |
topic |
Profesiones Buscadores de Internet Incorporación de la perspectiva de género Estereotipos (Psicología social) Algoritmos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
Machine learning is becoming increasingly important and pervasive in people's lives, yet when its conclusions reflect biases that support ingrained prejudices in society, many vulnerable groups' psychological wellbeing may be impacted. To investigate if gender biases exist in image search engine algorithms that use machine learning, the study focuses on occupations. To do this, searches for various professions were run on Google, DuckDuckGo, and Yandex. Using web scraping techniques, a sample of images was retrieved for each selected profession and search engine. The images were then manually classified by gender, and statistical indicators and analyses were computed to detect potential biases in the representation of each gender. This analysis included a comparison between search engines, the calculation of mean, standard deviation, and coefficient of variation, a confidence interval analysis, a logistic regression analysis, and a Chi-Square test. It was discovered that there is a strong association between men and leadership positions or STEM professions, while women are predominantly portrayed in traditionally female-associated professions. For instance, it was discovered that 100% of the search results for secretaries and nurses in Yandex are female, meanwhile 94% of the search results for engineers are male. Similar statistics may be found on DuckDuckGo, where 96% of results for mathematicians were men, and on Google, where 73% of results for teachers were women. These findings illuminate novel manifestations of gender prejudices in contemporary society and their potential to affect access to particular professions. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-02-10T23:23:30Z |
dc.date.available.none.fl_str_mv |
2025-02-10T23:23:30Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.other.none.fl_str_mv |
Tesis |
format |
bachelorThesis |
dc.identifier.citation.es_PE.fl_str_mv |
Tirado Vilela, N. A., & Ueunten Acevedo, A. M. (2024). Gender biases in professions: a machine learning – powered search engines analysis [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/22198 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/22198 |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
identifier_str_mv |
Tirado Vilela, N. A., & Ueunten Acevedo, A. M. (2024). Gender biases in professions: a machine learning – powered search engines analysis [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/22198 0000000121541816 |
url |
https://hdl.handle.net/20.500.12724/22198 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/1/T018_72927461_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/2/FA_72927461_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/3/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/4/T018_72927461_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/6/FA_72927461_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/8/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/5/T018_72927461_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/7/FA_72927461_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/9/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.jpg |
bitstream.checksum.fl_str_mv |
a86672f70aec6db199c277f79a2114b7 a884a0787ced547e41f39a1c0217d097 8f672f863ab92a29a3faad377702f547 6a37761d5876790c1339b34354eb6c5a a907322621f48f8104d2ad732977e8a5 4365906c93640527b38c2c0029363396 216637cac50c226e9b08c549a1bb6a19 66950c42083c69bfcd06e34924897432 c8029fa7060c3cd27d7aeca476430042 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844075884891340800 |
spelling |
Ruiz Ruiz, Marcos FernandoTirado Vilela, Nicolas AlejandroUeunten Acevedo, Adriana Maemi2025-02-10T23:23:30Z2025-02-10T23:23:30Z2024Tirado Vilela, N. A., & Ueunten Acevedo, A. M. (2024). Gender biases in professions: a machine learning – powered search engines analysis [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/22198https://hdl.handle.net/20.500.12724/221980000000121541816Machine learning is becoming increasingly important and pervasive in people's lives, yet when its conclusions reflect biases that support ingrained prejudices in society, many vulnerable groups' psychological wellbeing may be impacted. To investigate if gender biases exist in image search engine algorithms that use machine learning, the study focuses on occupations. To do this, searches for various professions were run on Google, DuckDuckGo, and Yandex. Using web scraping techniques, a sample of images was retrieved for each selected profession and search engine. The images were then manually classified by gender, and statistical indicators and analyses were computed to detect potential biases in the representation of each gender. This analysis included a comparison between search engines, the calculation of mean, standard deviation, and coefficient of variation, a confidence interval analysis, a logistic regression analysis, and a Chi-Square test. It was discovered that there is a strong association between men and leadership positions or STEM professions, while women are predominantly portrayed in traditionally female-associated professions. For instance, it was discovered that 100% of the search results for secretaries and nurses in Yandex are female, meanwhile 94% of the search results for engineers are male. Similar statistics may be found on DuckDuckGo, where 96% of results for mathematicians were men, and on Google, where 73% of results for teachers were women. These findings illuminate novel manifestations of gender prejudices in contemporary society and their potential to affect access to particular professions.El Machine Learning está adquiriendo cada vez más relevancia en la vida de las personas, pero cuando sus resultados reflejan sesgos sostenidos en prejuicios arraigados a la sociedad, el bienestar psicológico de múltiples grupos vulnerables puede verse afectado. Es por ello que la presente investigación tiene como objetivo determinar si existen sesgos de género en los algoritmos de motores de búsqueda de imágenes que utilizan Machine Learning. El estudio consistió en la búsqueda de diversas profesiones en Google, DuckDuckGo y Yandex. Utilizando técnicas de web scraping, se recuperó una muestra de imágenes para cada profesión seleccionada y motor de búsqueda. Posteriormente, las imágenes se clasificaron manualmente por género y mediante una serie de análisis estadísticos y cálculo de indicadores se comprobaron sesgos en la representación de cada género. Los análisis consistieron en una comparación de resultados entre los motores de búsqueda, cálculo de la media, desviación estándar y coeficiente de variación, análisis de intervalos de confianza, análisis de regresión logística y una prueba de Chi-Cuadrado. Se descubrió una fuerte asociación entre los hombres y los puestos de liderazgo o las profesiones STEM, mientras que las mujeres predominan en profesiones tradicionalmente asociadas a valores de cuidado y crianza (docencia, enfermería). Por ejemplo, se encontró que el 100% de los resultados de búsqueda para secretarias y enfermeras en Yandex son mujeres, mientras que el 94% de los resultados para ingenieros son hombres. Estadísticas similares se encontraron en DuckDuckGo, donde el 96% de los resultados para matemáticos eran hombres, y en Google, donde el 73% de los resultados para docentes eran mujeres. Estos hallazgos revelan manifestaciones de los prejuicios de género en la sociedad contemporánea y su potencial para afectar el acceso a determinadas profesiones.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAProfesionesBuscadores de InternetIncorporación de la perspectiva de géneroEstereotipos (Psicología social)AlgoritmosAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Gender biases in professions: a machine learning – powered search engines analysisinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0001-5147-8512100025057220267292746174067998https://purl.org/pe-repo/renati/level#tituloProfesionalUrbina Rivera, Carlos MedardoTaquia Gutiérrez, José AntonioRuiz Ruiz, Marcos Fernandohttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_72927461_T.pdfT018_72927461_T.pdfTesisapplication/pdf329720https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/1/T018_72927461_T.pdfa86672f70aec6db199c277f79a2114b7MD51FA_72927461_SR.pdfFA_72927461_SR.pdfAutorizaciónapplication/pdf216097https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/2/FA_72927461_SR.pdfa884a0787ced547e41f39a1c0217d097MD52TURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdfTURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdfReporte de similitudapplication/pdf2349921https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/3/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf8f672f863ab92a29a3faad377702f547MD53TEXTT018_72927461_T.pdf.txtT018_72927461_T.pdf.txtExtracted texttext/plain21288https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/4/T018_72927461_T.pdf.txt6a37761d5876790c1339b34354eb6c5aMD54FA_72927461_SR.pdf.txtFA_72927461_SR.pdf.txtExtracted texttext/plain2613https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/6/FA_72927461_SR.pdf.txta907322621f48f8104d2ad732977e8a5MD56TURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.txtTURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.txtExtracted texttext/plain65258https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/8/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.txt4365906c93640527b38c2c0029363396MD58THUMBNAILT018_72927461_T.pdf.jpgT018_72927461_T.pdf.jpgGenerated Thumbnailimage/jpeg10112https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/5/T018_72927461_T.pdf.jpg216637cac50c226e9b08c549a1bb6a19MD55FA_72927461_SR.pdf.jpgFA_72927461_SR.pdf.jpgGenerated Thumbnailimage/jpeg16328https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/7/FA_72927461_SR.pdf.jpg66950c42083c69bfcd06e34924897432MD57TURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.jpgTURNITIN_TIRADO VILELA NICOLAS ALEJANDRO_ 20181885.pdf.jpgGenerated Thumbnailimage/jpeg8765https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22198/9/TURNITIN_TIRADO%20VILELA%20NICOLAS%20ALEJANDRO_%2020181885.pdf.jpgc8029fa7060c3cd27d7aeca476430042MD5920.500.12724/22198oai:repositorio.ulima.edu.pe:20.500.12724/221982025-09-18 12:39:05.175Repositorio Universidad de Limarepositorio@ulima.edu.pe |
score |
13.025769 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).