Comparison of the machine learning and AquaCrop models for quinoa crops
Descripción del Articulo
One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For th...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/18812 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/18812 https://doi.org/10.17221/86/2021-RAE |
Nivel de acceso: | acceso abierto |
Materia: | Pendiente https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_b0b87974a92d9f24fe48c6862566a1d3 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/18812 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Comparison of the machine learning and AquaCrop models for quinoa crops |
title |
Comparison of the machine learning and AquaCrop models for quinoa crops |
spellingShingle |
Comparison of the machine learning and AquaCrop models for quinoa crops Chumbe Llimpe, Rossy Jackeline Pendiente https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Comparison of the machine learning and AquaCrop models for quinoa crops |
title_full |
Comparison of the machine learning and AquaCrop models for quinoa crops |
title_fullStr |
Comparison of the machine learning and AquaCrop models for quinoa crops |
title_full_unstemmed |
Comparison of the machine learning and AquaCrop models for quinoa crops |
title_sort |
Comparison of the machine learning and AquaCrop models for quinoa crops |
author |
Chumbe Llimpe, Rossy Jackeline |
author_facet |
Chumbe Llimpe, Rossy Jackeline Silva Paucar, Stefany Dennis García López, Yván Jesús |
author_role |
author |
author2 |
Silva Paucar, Stefany Dennis García López, Yván Jesús |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
García López, Yván Jesús |
dc.contributor.student.none.fl_str_mv |
Chumbe Llimpe, Rossy Jackeline (Ingeniería Industrial) Silva Paucar, Stefany Dennis (Ingeniería Industrial) |
dc.contributor.author.fl_str_mv |
Chumbe Llimpe, Rossy Jackeline Silva Paucar, Stefany Dennis García López, Yván Jesús |
dc.subject.es_PE.fl_str_mv |
Pendiente |
topic |
Pendiente https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December 2020. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Adaptive Boosting (AdaBoost) model in which it was observed that the mean and standard deviation of the AdaBoost models (mean = 19.681 and SD = 4.665) behave similarly to AquaCrop (mean = 19.838 and SD = 5.04). In addition, the result of ANOVA was that the AdaBoost model has the best P-value indicator with a value of 0.962 and a smaller margin of error in relation to the mean absolute error (MAE) indicator with a value of 0.629. Likewise, it was identified that, for the simulation period of 190 days, 472.35 mm of water was required to carry out the irrigation process in red quinoa crops. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-31T16:23:35Z |
dc.date.available.none.fl_str_mv |
2023-08-31T16:23:35Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Chumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAE |
dc.identifier.issn.none.fl_str_mv |
1212-9151 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/18812 |
dc.identifier.journal.none.fl_str_mv |
Research in Agricultural Engineering |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.17221/86/2021-RAE |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85164602834 |
identifier_str_mv |
Chumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAE 1212-9151 Research in Agricultural Engineering 0000000121541816 2-s2.0-85164602834 |
url |
https://hdl.handle.net/20.500.12724/18812 https://doi.org/10.17221/86/2021-RAE |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 1212-9151 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Czech Academy of Agricultural Sciences |
dc.publisher.country.none.fl_str_mv |
CZ |
publisher.none.fl_str_mv |
Czech Academy of Agricultural Sciences |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1840270514505908224 |
spelling |
Chumbe Llimpe, Rossy JackelineSilva Paucar, Stefany DennisGarcía López, Yván JesúsGarcía López, Yván JesúsChumbe Llimpe, Rossy Jackeline (Ingeniería Industrial)Silva Paucar, Stefany Dennis (Ingeniería Industrial)2023-08-31T16:23:35Z2023-08-31T16:23:35Z2023Chumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAE1212-9151https://hdl.handle.net/20.500.12724/18812Research in Agricultural Engineering0000000121541816https://doi.org/10.17221/86/2021-RAE2-s2.0-85164602834One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December 2020. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Adaptive Boosting (AdaBoost) model in which it was observed that the mean and standard deviation of the AdaBoost models (mean = 19.681 and SD = 4.665) behave similarly to AquaCrop (mean = 19.838 and SD = 5.04). In addition, the result of ANOVA was that the AdaBoost model has the best P-value indicator with a value of 0.962 and a smaller margin of error in relation to the mean absolute error (MAE) indicator with a value of 0.629. Likewise, it was identified that, for the simulation period of 190 days, 472.35 mm of water was required to carry out the irrigation process in red quinoa crops.application/htmlengCzech Academy of Agricultural SciencesCZurn:issn: 1212-9151info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientehttps://purl.org/pe-repo/ocde/ford#2.11.04Comparison of the machine learning and AquaCrop models for quinoa cropsinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería IndustrialGarcía-López, Yván Jesús (Department Industrial Engineering, Faculty of Engineering, University of Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/18812oai:repositorio.ulima.edu.pe:20.500.12724/188122024-11-08 16:16:05.211Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.11166 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).