Comparison of the machine learning and AquaCrop models for quinoa crops

Descripción del Articulo

One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For th...

Descripción completa

Detalles Bibliográficos
Autores: Chumbe Llimpe, Rossy Jackeline, Silva Paucar, Stefany Dennis, García López, Yván Jesús
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/18812
Enlace del recurso:https://hdl.handle.net/20.500.12724/18812
https://doi.org/10.17221/86/2021-RAE
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_b0b87974a92d9f24fe48c6862566a1d3
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/18812
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Comparison of the machine learning and AquaCrop models for quinoa crops
title Comparison of the machine learning and AquaCrop models for quinoa crops
spellingShingle Comparison of the machine learning and AquaCrop models for quinoa crops
Chumbe Llimpe, Rossy Jackeline
Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Comparison of the machine learning and AquaCrop models for quinoa crops
title_full Comparison of the machine learning and AquaCrop models for quinoa crops
title_fullStr Comparison of the machine learning and AquaCrop models for quinoa crops
title_full_unstemmed Comparison of the machine learning and AquaCrop models for quinoa crops
title_sort Comparison of the machine learning and AquaCrop models for quinoa crops
author Chumbe Llimpe, Rossy Jackeline
author_facet Chumbe Llimpe, Rossy Jackeline
Silva Paucar, Stefany Dennis
García López, Yván Jesús
author_role author
author2 Silva Paucar, Stefany Dennis
García López, Yván Jesús
author2_role author
author
dc.contributor.other.none.fl_str_mv García López, Yván Jesús
dc.contributor.student.none.fl_str_mv Chumbe Llimpe, Rossy Jackeline (Ingeniería Industrial)
Silva Paucar, Stefany Dennis (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Chumbe Llimpe, Rossy Jackeline
Silva Paucar, Stefany Dennis
García López, Yván Jesús
dc.subject.es_PE.fl_str_mv Pendiente
topic Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December 2020. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Adaptive Boosting (AdaBoost) model in which it was observed that the mean and standard deviation of the AdaBoost models (mean = 19.681 and SD = 4.665) behave similarly to AquaCrop (mean = 19.838 and SD = 5.04). In addition, the result of ANOVA was that the AdaBoost model has the best P-value indicator with a value of 0.962 and a smaller margin of error in relation to the mean absolute error (MAE) indicator with a value of 0.629. Likewise, it was identified that, for the simulation period of 190 days, 472.35 mm of water was required to carry out the irrigation process in red quinoa crops.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-31T16:23:35Z
dc.date.available.none.fl_str_mv 2023-08-31T16:23:35Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Chumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAE
dc.identifier.issn.none.fl_str_mv 1212-9151
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/18812
dc.identifier.journal.none.fl_str_mv Research in Agricultural Engineering
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.17221/86/2021-RAE
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85164602834
identifier_str_mv Chumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAE
1212-9151
Research in Agricultural Engineering
0000000121541816
2-s2.0-85164602834
url https://hdl.handle.net/20.500.12724/18812
https://doi.org/10.17221/86/2021-RAE
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 1212-9151
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Czech Academy of Agricultural Sciences
dc.publisher.country.none.fl_str_mv CZ
publisher.none.fl_str_mv Czech Academy of Agricultural Sciences
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1840270514505908224
spelling Chumbe Llimpe, Rossy JackelineSilva Paucar, Stefany DennisGarcía López, Yván JesúsGarcía López, Yván JesúsChumbe Llimpe, Rossy Jackeline (Ingeniería Industrial)Silva Paucar, Stefany Dennis (Ingeniería Industrial)2023-08-31T16:23:35Z2023-08-31T16:23:35Z2023Chumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAE1212-9151https://hdl.handle.net/20.500.12724/18812Research in Agricultural Engineering0000000121541816https://doi.org/10.17221/86/2021-RAE2-s2.0-85164602834One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December 2020. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Adaptive Boosting (AdaBoost) model in which it was observed that the mean and standard deviation of the AdaBoost models (mean = 19.681 and SD = 4.665) behave similarly to AquaCrop (mean = 19.838 and SD = 5.04). In addition, the result of ANOVA was that the AdaBoost model has the best P-value indicator with a value of 0.962 and a smaller margin of error in relation to the mean absolute error (MAE) indicator with a value of 0.629. Likewise, it was identified that, for the simulation period of 190 days, 472.35 mm of water was required to carry out the irrigation process in red quinoa crops.application/htmlengCzech Academy of Agricultural SciencesCZurn:issn: 1212-9151info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientehttps://purl.org/pe-repo/ocde/ford#2.11.04Comparison of the machine learning and AquaCrop models for quinoa cropsinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería IndustrialGarcía-López, Yván Jesús (Department Industrial Engineering, Faculty of Engineering, University of Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/18812/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/18812oai:repositorio.ulima.edu.pe:20.500.12724/188122024-11-08 16:16:05.211Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.11166
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).