Detection of Pathologies in X-Rays Based on a Deep Learning Framework

Descripción del Articulo

The diagnostic process of respiratory diseases requires experience and skills to assess the different pathologies that patients may develop. Unfortunately, the lack of qualified radiologists is a global problem that limits respiratory diseases diagnosis. Therefore, it will be useful to have a tool t...

Descripción completa

Detalles Bibliográficos
Autores: Camasca, Jhonatan, Calderón Niquin, Marks, Mamani Ticona, Wilfredo
Formato: objeto de conferencia
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/13922
Enlace del recurso:https://hdl.handle.net/20.500.12724/13922
Nivel de acceso:acceso abierto
Materia:Radiografía
Diagnóstico asistido por ordenador
Enfermedades respiratorias
Aprendizaje automático
Aprendizaje profundo
Radiography
Diagnosis, Computer Assisted
Respiration Disorders
Machine learning
Deep learning
Ingeniería de sistemas / Software
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_a6fa236066030a1a7f09ea75521a0122
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/13922
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Detection of Pathologies in X-Rays Based on a Deep Learning Framework
dc.title.alternative.es_PE.fl_str_mv Detección de presencia patológica en radiografías basada en un marco de deep learning
title Detection of Pathologies in X-Rays Based on a Deep Learning Framework
spellingShingle Detection of Pathologies in X-Rays Based on a Deep Learning Framework
Camasca, Jhonatan
Radiografía
Diagnóstico asistido por ordenador
Enfermedades respiratorias
Aprendizaje automático
Aprendizaje profundo
Radiography
Diagnosis, Computer Assisted
Respiration Disorders
Machine learning
Deep learning
Ingeniería de sistemas / Software
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Detection of Pathologies in X-Rays Based on a Deep Learning Framework
title_full Detection of Pathologies in X-Rays Based on a Deep Learning Framework
title_fullStr Detection of Pathologies in X-Rays Based on a Deep Learning Framework
title_full_unstemmed Detection of Pathologies in X-Rays Based on a Deep Learning Framework
title_sort Detection of Pathologies in X-Rays Based on a Deep Learning Framework
author Camasca, Jhonatan
author_facet Camasca, Jhonatan
Calderón Niquin, Marks
Mamani Ticona, Wilfredo
author_role author
author2 Calderón Niquin, Marks
Mamani Ticona, Wilfredo
author2_role author
author
dc.contributor.author.fl_str_mv Camasca, Jhonatan
Calderón Niquin, Marks
Mamani Ticona, Wilfredo
dc.subject.es_PE.fl_str_mv Radiografía
Diagnóstico asistido por ordenador
Enfermedades respiratorias
Aprendizaje automático
Aprendizaje profundo
topic Radiografía
Diagnóstico asistido por ordenador
Enfermedades respiratorias
Aprendizaje automático
Aprendizaje profundo
Radiography
Diagnosis, Computer Assisted
Respiration Disorders
Machine learning
Deep learning
Ingeniería de sistemas / Software
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.en_EN.fl_str_mv Radiography
Diagnosis, Computer Assisted
Respiration Disorders
Machine learning
Deep learning
dc.subject.classification.es_PE.fl_str_mv Ingeniería de sistemas / Software
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The diagnostic process of respiratory diseases requires experience and skills to assess the different pathologies that patients may develop. Unfortunately, the lack of qualified radiologists is a global problem that limits respiratory diseases diagnosis. Therefore, it will be useful to have a tool that minimizes errors and workload, improves efficiency, and speeds up the diagnostic process in order to provide a better healthcare service to the community. This research proposes a methodology to detect pathologies by using deep learning architectures. The present proposal is divided into three types of experiments. The first one evaluates the performance of feature descriptors such as SIFT, SURF, and ORB in medical images with machine learning models as an introduction to the last experiment. The second one evaluates the performance of deep learning architectures such as ResNet50, Alexnet, VGG16, and LeNet. Finally, the third one evaluates the combination of deep learning and machine learning classifiers. Furthermore, a novel chest X-ray dataset called PathX_Chest, which contains 2,200 images of ten different classes, is presented. In contrast with the state of the art, good results were obtained in the three different approaches. However, the best performance was achieved by combining deep learning and machine learning: a 99.99 % accuracy was obtained with the combination of ResNet50 and SVM classifier. This methodology may be used to develop a CAD system to help radiologists have a second opinion and a support during the diagnostic procedure
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-20T16:38:52Z
dc.date.available.none.fl_str_mv 2021-08-20T16:38:52Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.other.none.fl_str_mv Artículo de conferencia
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Camasca, J., Calderón-Niquin, M. & Mamani-Ticona, W. (2021). Detection of Pathologies in X-Rays Based on a Deep Learning Framework. En Universidad de Lima (Ed.), Construyendo un mundo inteligente para la sostenibilidad. Actas del III Congreso Internacional de Ingeniería de Sistemas (pp. 213-224), Lima, 17 y 20 de noviembre del 2020. Universidad de Lima, Fondo Editorial.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/13922
identifier_str_mv Camasca, J., Calderón-Niquin, M. & Mamani-Ticona, W. (2021). Detection of Pathologies in X-Rays Based on a Deep Learning Framework. En Universidad de Lima (Ed.), Construyendo un mundo inteligente para la sostenibilidad. Actas del III Congreso Internacional de Ingeniería de Sistemas (pp. 213-224), Lima, 17 y 20 de noviembre del 2020. Universidad de Lima, Fondo Editorial.
url https://hdl.handle.net/20.500.12724/13922
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:isbn:978-9972-45-563-6
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Perú
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Perú
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad de Lima
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/5/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/4/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/1/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
1d1c513bf4164ef33381b2b4218ee24b
996ec0591c9f7e0ec996fa6112ff4d40
7258407fd65a1ae177f2d96708e29942
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1822513746350702592
spelling Camasca, JhonatanCalderón Niquin, MarksMamani Ticona, Wilfredo2021-08-20T16:38:52Z2021-08-20T16:38:52Z2021Camasca, J., Calderón-Niquin, M. & Mamani-Ticona, W. (2021). Detection of Pathologies in X-Rays Based on a Deep Learning Framework. En Universidad de Lima (Ed.), Construyendo un mundo inteligente para la sostenibilidad. Actas del III Congreso Internacional de Ingeniería de Sistemas (pp. 213-224), Lima, 17 y 20 de noviembre del 2020. Universidad de Lima, Fondo Editorial.https://hdl.handle.net/20.500.12724/13922The diagnostic process of respiratory diseases requires experience and skills to assess the different pathologies that patients may develop. Unfortunately, the lack of qualified radiologists is a global problem that limits respiratory diseases diagnosis. Therefore, it will be useful to have a tool that minimizes errors and workload, improves efficiency, and speeds up the diagnostic process in order to provide a better healthcare service to the community. This research proposes a methodology to detect pathologies by using deep learning architectures. The present proposal is divided into three types of experiments. The first one evaluates the performance of feature descriptors such as SIFT, SURF, and ORB in medical images with machine learning models as an introduction to the last experiment. The second one evaluates the performance of deep learning architectures such as ResNet50, Alexnet, VGG16, and LeNet. Finally, the third one evaluates the combination of deep learning and machine learning classifiers. Furthermore, a novel chest X-ray dataset called PathX_Chest, which contains 2,200 images of ten different classes, is presented. In contrast with the state of the art, good results were obtained in the three different approaches. However, the best performance was achieved by combining deep learning and machine learning: a 99.99 % accuracy was obtained with the combination of ResNet50 and SVM classifier. This methodology may be used to develop a CAD system to help radiologists have a second opinion and a support during the diagnostic procedureapplication/pdfspaUniversidad de LimaPEurn:isbn:978-9972-45-563-6info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Perúhttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMARadiografíaDiagnóstico asistido por ordenadorEnfermedades respiratoriasAprendizaje automáticoAprendizaje profundoRadiographyDiagnosis, Computer AssistedRespiration DisordersMachine learningDeep learningIngeniería de sistemas / Softwarehttps://purl.org/pe-repo/ocde/ford#2.02.04Detection of Pathologies in X-Rays Based on a Deep Learning FrameworkDetección de presencia patológica en radiografías basada en un marco de deep learninginfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52THUMBNAILCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpgCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpgGenerated Thumbnailimage/jpeg12869https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/5/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpg1d1c513bf4164ef33381b2b4218ee24bMD55TEXTCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txtCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txtExtracted texttext/plain24415https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/4/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txt996ec0591c9f7e0ec996fa6112ff4d40MD54ORIGINALCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdfCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdfapplication/pdf860950https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/1/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf7258407fd65a1ae177f2d96708e29942MD5120.500.12724/13922oai:repositorio.ulima.edu.pe:20.500.12724/139222022-11-14 16:28:03.68Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.897231
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).