Detection of Pathologies in X-Rays Based on a Deep Learning Framework
Descripción del Articulo
The diagnostic process of respiratory diseases requires experience and skills to assess the different pathologies that patients may develop. Unfortunately, the lack of qualified radiologists is a global problem that limits respiratory diseases diagnosis. Therefore, it will be useful to have a tool t...
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/13922 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/13922 |
| Nivel de acceso: | acceso abierto |
| Materia: | Radiografía Diagnóstico asistido por ordenador Enfermedades respiratorias Aprendizaje automático Aprendizaje profundo Radiography Diagnosis, Computer Assisted Respiration Disorders Machine learning Deep learning Ingeniería de sistemas / Software https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
RULI_a6fa236066030a1a7f09ea75521a0122 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/13922 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.es_PE.fl_str_mv |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| dc.title.alternative.es_PE.fl_str_mv |
Detección de presencia patológica en radiografías basada en un marco de deep learning |
| title |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| spellingShingle |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework Camasca, Jhonatan Radiografía Diagnóstico asistido por ordenador Enfermedades respiratorias Aprendizaje automático Aprendizaje profundo Radiography Diagnosis, Computer Assisted Respiration Disorders Machine learning Deep learning Ingeniería de sistemas / Software https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| title_full |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| title_fullStr |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| title_full_unstemmed |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| title_sort |
Detection of Pathologies in X-Rays Based on a Deep Learning Framework |
| author |
Camasca, Jhonatan |
| author_facet |
Camasca, Jhonatan Calderón Niquin, Marks Mamani Ticona, Wilfredo |
| author_role |
author |
| author2 |
Calderón Niquin, Marks Mamani Ticona, Wilfredo |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Camasca, Jhonatan Calderón Niquin, Marks Mamani Ticona, Wilfredo |
| dc.subject.es_PE.fl_str_mv |
Radiografía Diagnóstico asistido por ordenador Enfermedades respiratorias Aprendizaje automático Aprendizaje profundo |
| topic |
Radiografía Diagnóstico asistido por ordenador Enfermedades respiratorias Aprendizaje automático Aprendizaje profundo Radiography Diagnosis, Computer Assisted Respiration Disorders Machine learning Deep learning Ingeniería de sistemas / Software https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.en_EN.fl_str_mv |
Radiography Diagnosis, Computer Assisted Respiration Disorders Machine learning Deep learning |
| dc.subject.classification.es_PE.fl_str_mv |
Ingeniería de sistemas / Software |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
The diagnostic process of respiratory diseases requires experience and skills to assess the different pathologies that patients may develop. Unfortunately, the lack of qualified radiologists is a global problem that limits respiratory diseases diagnosis. Therefore, it will be useful to have a tool that minimizes errors and workload, improves efficiency, and speeds up the diagnostic process in order to provide a better healthcare service to the community. This research proposes a methodology to detect pathologies by using deep learning architectures. The present proposal is divided into three types of experiments. The first one evaluates the performance of feature descriptors such as SIFT, SURF, and ORB in medical images with machine learning models as an introduction to the last experiment. The second one evaluates the performance of deep learning architectures such as ResNet50, Alexnet, VGG16, and LeNet. Finally, the third one evaluates the combination of deep learning and machine learning classifiers. Furthermore, a novel chest X-ray dataset called PathX_Chest, which contains 2,200 images of ten different classes, is presented. In contrast with the state of the art, good results were obtained in the three different approaches. However, the best performance was achieved by combining deep learning and machine learning: a 99.99 % accuracy was obtained with the combination of ResNet50 and SVM classifier. This methodology may be used to develop a CAD system to help radiologists have a second opinion and a support during the diagnostic procedure |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-08-20T16:38:52Z |
| dc.date.available.none.fl_str_mv |
2021-08-20T16:38:52Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.other.none.fl_str_mv |
Artículo de conferencia |
| format |
conferenceObject |
| dc.identifier.citation.es_PE.fl_str_mv |
Camasca, J., Calderón-Niquin, M. & Mamani-Ticona, W. (2021). Detection of Pathologies in X-Rays Based on a Deep Learning Framework. En Universidad de Lima (Ed.), Construyendo un mundo inteligente para la sostenibilidad. Actas del III Congreso Internacional de Ingeniería de Sistemas (pp. 213-224), Lima, 17 y 20 de noviembre del 2020. Universidad de Lima, Fondo Editorial. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/13922 |
| identifier_str_mv |
Camasca, J., Calderón-Niquin, M. & Mamani-Ticona, W. (2021). Detection of Pathologies in X-Rays Based on a Deep Learning Framework. En Universidad de Lima (Ed.), Construyendo un mundo inteligente para la sostenibilidad. Actas del III Congreso Internacional de Ingeniería de Sistemas (pp. 213-224), Lima, 17 y 20 de noviembre del 2020. Universidad de Lima, Fondo Editorial. |
| url |
https://hdl.handle.net/20.500.12724/13922 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.none.fl_str_mv |
urn:isbn:978-9972-45-563-6 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Perú |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Perú http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima |
| dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/2/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/5/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/4/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/1/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 1d1c513bf4164ef33381b2b4218ee24b 996ec0591c9f7e0ec996fa6112ff4d40 7258407fd65a1ae177f2d96708e29942 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1822513746350702592 |
| spelling |
Camasca, JhonatanCalderón Niquin, MarksMamani Ticona, Wilfredo2021-08-20T16:38:52Z2021-08-20T16:38:52Z2021Camasca, J., Calderón-Niquin, M. & Mamani-Ticona, W. (2021). Detection of Pathologies in X-Rays Based on a Deep Learning Framework. En Universidad de Lima (Ed.), Construyendo un mundo inteligente para la sostenibilidad. Actas del III Congreso Internacional de Ingeniería de Sistemas (pp. 213-224), Lima, 17 y 20 de noviembre del 2020. Universidad de Lima, Fondo Editorial.https://hdl.handle.net/20.500.12724/13922The diagnostic process of respiratory diseases requires experience and skills to assess the different pathologies that patients may develop. Unfortunately, the lack of qualified radiologists is a global problem that limits respiratory diseases diagnosis. Therefore, it will be useful to have a tool that minimizes errors and workload, improves efficiency, and speeds up the diagnostic process in order to provide a better healthcare service to the community. This research proposes a methodology to detect pathologies by using deep learning architectures. The present proposal is divided into three types of experiments. The first one evaluates the performance of feature descriptors such as SIFT, SURF, and ORB in medical images with machine learning models as an introduction to the last experiment. The second one evaluates the performance of deep learning architectures such as ResNet50, Alexnet, VGG16, and LeNet. Finally, the third one evaluates the combination of deep learning and machine learning classifiers. Furthermore, a novel chest X-ray dataset called PathX_Chest, which contains 2,200 images of ten different classes, is presented. In contrast with the state of the art, good results were obtained in the three different approaches. However, the best performance was achieved by combining deep learning and machine learning: a 99.99 % accuracy was obtained with the combination of ResNet50 and SVM classifier. This methodology may be used to develop a CAD system to help radiologists have a second opinion and a support during the diagnostic procedureapplication/pdfspaUniversidad de LimaPEurn:isbn:978-9972-45-563-6info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Perúhttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMARadiografíaDiagnóstico asistido por ordenadorEnfermedades respiratoriasAprendizaje automáticoAprendizaje profundoRadiographyDiagnosis, Computer AssistedRespiration DisordersMachine learningDeep learningIngeniería de sistemas / Softwarehttps://purl.org/pe-repo/ocde/ford#2.02.04Detection of Pathologies in X-Rays Based on a Deep Learning FrameworkDetección de presencia patológica en radiografías basada en un marco de deep learninginfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52THUMBNAILCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpgCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpgGenerated Thumbnailimage/jpeg12869https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/5/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.jpg1d1c513bf4164ef33381b2b4218ee24bMD55TEXTCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txtCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txtExtracted texttext/plain24415https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/4/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf.txt996ec0591c9f7e0ec996fa6112ff4d40MD54ORIGINALCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdfCamasca_Calderón_Mamani_Detection-of-Pathologies-in-X-Rays.pdfapplication/pdf860950https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13922/1/Camasca_Calder%c3%b3n_Mamani_Detection-of-Pathologies-in-X-Rays.pdf7258407fd65a1ae177f2d96708e29942MD5120.500.12724/13922oai:repositorio.ulima.edu.pe:20.500.12724/139222022-11-14 16:28:03.68Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.897231 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).