Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima

Descripción del Articulo

This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior o...

Descripción completa

Detalles Bibliográficos
Autores: Cueva Roldan, Renzo Aaron, Molina Cueva, Airton Fabrizio
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/22491
Enlace del recurso:https://hdl.handle.net/20.500.12724/22491
Nivel de acceso:acceso abierto
Materia:Análisis de series temporales
Dióxido de nitrógeno
Contaminación atmosférica
Meteorología
https://purl.org/pe-repo/ocde/ford#2.11.06
id RULI_706bdad87ecc468da558bbb2613fd5d4
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/22491
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
title Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
spellingShingle Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
Cueva Roldan, Renzo Aaron
Análisis de series temporales
Dióxido de nitrógeno
Contaminación atmosférica
Meteorología
https://purl.org/pe-repo/ocde/ford#2.11.06
title_short Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
title_full Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
title_fullStr Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
title_full_unstemmed Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
title_sort Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
author Cueva Roldan, Renzo Aaron
author_facet Cueva Roldan, Renzo Aaron
Molina Cueva, Airton Fabrizio
author_role author
author2 Molina Cueva, Airton Fabrizio
author2_role author
dc.contributor.advisor.fl_str_mv Quiroz Flores, Juan Carlos
dc.contributor.author.fl_str_mv Cueva Roldan, Renzo Aaron
Molina Cueva, Airton Fabrizio
dc.subject.es_PE.fl_str_mv Análisis de series temporales
Dióxido de nitrógeno
Contaminación atmosférica
Meteorología
topic Análisis de series temporales
Dióxido de nitrógeno
Contaminación atmosférica
Meteorología
https://purl.org/pe-repo/ocde/ford#2.11.06
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.06
description This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-04-09T22:03:37Z
dc.date.available.none.fl_str_mv 2025-04-09T22:03:37Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/22491
dc.identifier.isni.none.fl_str_mv 0000000121541816
url https://hdl.handle.net/20.500.12724/22491
identifier_str_mv 0000000121541816
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/1/T018_73998261_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/2/FA_73998261_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/3/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/4/T018_73998261_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/6/FA_73998261_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/8/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/5/T018_73998261_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/7/FA_73998261_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/9/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.jpg
bitstream.checksum.fl_str_mv a8ccc2906396d6e96a5101d1ecdb2fc9
d727940902b50700acb06ffbd00968ba
a5c7073fe0c58e7075578c496452d65f
68da9b5785e48e9d4b6f1ad15340da19
9e8f05aa527159dd10d0a478ba4ee711
351380fb924599860d373832df565bd5
c840f7f82e90532cab1f0ce541a1ce93
5e98c553c3b9d4efad9f842f0547141a
6cdc6b6ef2171fe4910605cf1c74f0e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1847246204768878592
spelling Quiroz Flores, Juan CarlosCueva Roldan, Renzo AaronMolina Cueva, Airton Fabrizio2025-04-09T22:03:37Z2025-04-09T22:03:37Z2024https://hdl.handle.net/20.500.12724/224910000000121541816This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.La investigación abordará sobre la contaminación del aire, un problema grave en todas las ciudades del mundo, debido a que afectan negativamente en la salud de las personas y deterioran el ecosistema. El NO2 es un gas vinculado con la formación de lluvias ácidas y a diversas reacciones con los gases de efecto invernadero. Las variables meteorológicas influyen en el comportamiento de la concentración de NO2 troposférico. Durante el periodo de confinamiento por la pandemia de COVID-19, los niveles de concentración de contaminantes descendieron abruptamente, lo que significó un alivio para el ecosistema. La aplicación de modelos de Series de Tiempo permite identificar gráficamente la concentración de contaminantes en diversas zonas y realizar pronósticos precisos para mitigar problemas ambientales en el futuro. El análisis de la investigación muestra que el modelo SARIMA pronostica efectivamente la concentración de contaminantes en los distritos de San Borja y San Martín de Porres en Lima. Las pruebas de error tales como R2, MAE, MAPE, MSE y RSME, así como la Prueba de Dickey-Fuller, AIC, BIC, Skew y Kurtosis proporcionan información sobre el rendimiento del modelo SARIMA y demuestran que este es el más adecuado.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAnálisis de series temporalesDióxido de nitrógenoContaminación atmosféricaMeteorologíahttps://purl.org/pe-repo/ocde/ford#2.11.06Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Limainfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103001857220267399826176511969https://purl.org/pe-repo/renati/level#tituloProfesionalTaquia Gutiérrez, José AntonioTupia De La Cruz, Elmer LuisQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_73998261_T.pdfT018_73998261_T.pdfTesisapplication/pdf314062https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/1/T018_73998261_T.pdfa8ccc2906396d6e96a5101d1ecdb2fc9MD51FA_73998261_SR.pdfFA_73998261_SR.pdfAutorizaciónapplication/pdf255682https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/2/FA_73998261_SR.pdfd727940902b50700acb06ffbd00968baMD52TURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdfTURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdfReporte de similitudapplication/pdf2239781https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/3/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdfa5c7073fe0c58e7075578c496452d65fMD53TEXTT018_73998261_T.pdf.txtT018_73998261_T.pdf.txtExtracted texttext/plain18456https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/4/T018_73998261_T.pdf.txt68da9b5785e48e9d4b6f1ad15340da19MD54FA_73998261_SR.pdf.txtFA_73998261_SR.pdf.txtExtracted texttext/plain4375https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/6/FA_73998261_SR.pdf.txt9e8f05aa527159dd10d0a478ba4ee711MD56TURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.txtTURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.txtExtracted texttext/plain22638https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/8/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.txt351380fb924599860d373832df565bd5MD58THUMBNAILT018_73998261_T.pdf.jpgT018_73998261_T.pdf.jpgGenerated Thumbnailimage/jpeg11691https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/5/T018_73998261_T.pdf.jpgc840f7f82e90532cab1f0ce541a1ce93MD55FA_73998261_SR.pdf.jpgFA_73998261_SR.pdf.jpgGenerated Thumbnailimage/jpeg21357https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/7/FA_73998261_SR.pdf.jpg5e98c553c3b9d4efad9f842f0547141aMD57TURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.jpgTURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.jpgGenerated Thumbnailimage/jpeg8327https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/9/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.jpg6cdc6b6ef2171fe4910605cf1c74f0e4MD5920.500.12724/22491oai:repositorio.ulima.edu.pe:20.500.12724/224912025-09-17 13:55:04.074Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.085615
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).