Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima
Descripción del Articulo
        This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior o...
              
            
    
                        | Autores: | , | 
|---|---|
| Formato: | tesis de grado | 
| Fecha de Publicación: | 2024 | 
| Institución: | Universidad de Lima | 
| Repositorio: | ULIMA-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/22491 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/22491 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Análisis de series temporales Dióxido de nitrógeno Contaminación atmosférica Meteorología https://purl.org/pe-repo/ocde/ford#2.11.06 | 
| id | RULI_706bdad87ecc468da558bbb2613fd5d4 | 
|---|---|
| oai_identifier_str | oai:repositorio.ulima.edu.pe:20.500.12724/22491 | 
| network_acronym_str | RULI | 
| network_name_str | ULIMA-Institucional | 
| repository_id_str | 3883 | 
| dc.title.en_EN.fl_str_mv | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| title | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| spellingShingle | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima Cueva Roldan, Renzo Aaron Análisis de series temporales Dióxido de nitrógeno Contaminación atmosférica Meteorología https://purl.org/pe-repo/ocde/ford#2.11.06 | 
| title_short | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| title_full | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| title_fullStr | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| title_full_unstemmed | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| title_sort | Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Lima | 
| author | Cueva Roldan, Renzo Aaron | 
| author_facet | Cueva Roldan, Renzo Aaron Molina Cueva, Airton Fabrizio | 
| author_role | author | 
| author2 | Molina Cueva, Airton Fabrizio | 
| author2_role | author | 
| dc.contributor.advisor.fl_str_mv | Quiroz Flores, Juan Carlos | 
| dc.contributor.author.fl_str_mv | Cueva Roldan, Renzo Aaron Molina Cueva, Airton Fabrizio | 
| dc.subject.es_PE.fl_str_mv | Análisis de series temporales Dióxido de nitrógeno Contaminación atmosférica Meteorología | 
| topic | Análisis de series temporales Dióxido de nitrógeno Contaminación atmosférica Meteorología https://purl.org/pe-repo/ocde/ford#2.11.06 | 
| dc.subject.ocde.none.fl_str_mv | https://purl.org/pe-repo/ocde/ford#2.11.06 | 
| description | This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable. | 
| publishDate | 2024 | 
| dc.date.accessioned.none.fl_str_mv | 2025-04-09T22:03:37Z | 
| dc.date.available.none.fl_str_mv | 2025-04-09T22:03:37Z | 
| dc.date.issued.fl_str_mv | 2024 | 
| dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis | 
| dc.type.other.none.fl_str_mv | Tesis | 
| format | bachelorThesis | 
| dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12724/22491 | 
| dc.identifier.isni.none.fl_str_mv | 0000000121541816 | 
| url | https://hdl.handle.net/20.500.12724/22491 | 
| identifier_str_mv | 0000000121541816 | 
| dc.language.iso.none.fl_str_mv | eng | 
| language | eng | 
| dc.relation.ispartof.fl_str_mv | SUNEDU | 
| dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess | 
| dc.rights.uri.*.fl_str_mv | https://creativecommons.org/licenses/by-nc-sa/4.0/ | 
| eu_rights_str_mv | openAccess | 
| rights_invalid_str_mv | https://creativecommons.org/licenses/by-nc-sa/4.0/ | 
| dc.format.none.fl_str_mv | application/pdf | 
| dc.publisher.none.fl_str_mv | Universidad de Lima | 
| dc.publisher.country.none.fl_str_mv | PE | 
| publisher.none.fl_str_mv | Universidad de Lima | 
| dc.source.none.fl_str_mv | Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA | 
| instname_str | Universidad de Lima | 
| instacron_str | ULIMA | 
| institution | ULIMA | 
| reponame_str | ULIMA-Institucional | 
| collection | ULIMA-Institucional | 
| bitstream.url.fl_str_mv | https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/1/T018_73998261_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/2/FA_73998261_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/3/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/4/T018_73998261_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/6/FA_73998261_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/8/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/5/T018_73998261_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/7/FA_73998261_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/9/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.jpg | 
| bitstream.checksum.fl_str_mv | a8ccc2906396d6e96a5101d1ecdb2fc9 d727940902b50700acb06ffbd00968ba a5c7073fe0c58e7075578c496452d65f 68da9b5785e48e9d4b6f1ad15340da19 9e8f05aa527159dd10d0a478ba4ee711 351380fb924599860d373832df565bd5 c840f7f82e90532cab1f0ce541a1ce93 5e98c553c3b9d4efad9f842f0547141a 6cdc6b6ef2171fe4910605cf1c74f0e4 | 
| bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 | 
| repository.name.fl_str_mv | Repositorio Universidad de Lima | 
| repository.mail.fl_str_mv | repositorio@ulima.edu.pe | 
| _version_ | 1847246204768878592 | 
| spelling | Quiroz Flores, Juan CarlosCueva Roldan, Renzo AaronMolina Cueva, Airton Fabrizio2025-04-09T22:03:37Z2025-04-09T22:03:37Z2024https://hdl.handle.net/20.500.12724/224910000000121541816This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.La investigación abordará sobre la contaminación del aire, un problema grave en todas las ciudades del mundo, debido a que afectan negativamente en la salud de las personas y deterioran el ecosistema. El NO2 es un gas vinculado con la formación de lluvias ácidas y a diversas reacciones con los gases de efecto invernadero. Las variables meteorológicas influyen en el comportamiento de la concentración de NO2 troposférico. Durante el periodo de confinamiento por la pandemia de COVID-19, los niveles de concentración de contaminantes descendieron abruptamente, lo que significó un alivio para el ecosistema. La aplicación de modelos de Series de Tiempo permite identificar gráficamente la concentración de contaminantes en diversas zonas y realizar pronósticos precisos para mitigar problemas ambientales en el futuro. El análisis de la investigación muestra que el modelo SARIMA pronostica efectivamente la concentración de contaminantes en los distritos de San Borja y San Martín de Porres en Lima. Las pruebas de error tales como R2, MAE, MAPE, MSE y RSME, así como la Prueba de Dickey-Fuller, AIC, BIC, Skew y Kurtosis proporcionan información sobre el rendimiento del modelo SARIMA y demuestran que este es el más adecuado.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAnálisis de series temporalesDióxido de nitrógenoContaminación atmosféricaMeteorologíahttps://purl.org/pe-repo/ocde/ford#2.11.06Application of the use of time series models: tropospheric nitrogen dioxide (NO2) in different meteorological systems in two districts of the city of Limainfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103001857220267399826176511969https://purl.org/pe-repo/renati/level#tituloProfesionalTaquia Gutiérrez, José AntonioTupia De La Cruz, Elmer LuisQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_73998261_T.pdfT018_73998261_T.pdfTesisapplication/pdf314062https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/1/T018_73998261_T.pdfa8ccc2906396d6e96a5101d1ecdb2fc9MD51FA_73998261_SR.pdfFA_73998261_SR.pdfAutorizaciónapplication/pdf255682https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/2/FA_73998261_SR.pdfd727940902b50700acb06ffbd00968baMD52TURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdfTURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdfReporte de similitudapplication/pdf2239781https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/3/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdfa5c7073fe0c58e7075578c496452d65fMD53TEXTT018_73998261_T.pdf.txtT018_73998261_T.pdf.txtExtracted texttext/plain18456https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/4/T018_73998261_T.pdf.txt68da9b5785e48e9d4b6f1ad15340da19MD54FA_73998261_SR.pdf.txtFA_73998261_SR.pdf.txtExtracted texttext/plain4375https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/6/FA_73998261_SR.pdf.txt9e8f05aa527159dd10d0a478ba4ee711MD56TURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.txtTURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.txtExtracted texttext/plain22638https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/8/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.txt351380fb924599860d373832df565bd5MD58THUMBNAILT018_73998261_T.pdf.jpgT018_73998261_T.pdf.jpgGenerated Thumbnailimage/jpeg11691https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/5/T018_73998261_T.pdf.jpgc840f7f82e90532cab1f0ce541a1ce93MD55FA_73998261_SR.pdf.jpgFA_73998261_SR.pdf.jpgGenerated Thumbnailimage/jpeg21357https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/7/FA_73998261_SR.pdf.jpg5e98c553c3b9d4efad9f842f0547141aMD57TURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.jpgTURNITIN_CUEVA ROLDAN RENZO AARON_20173255 .pdf.jpgGenerated Thumbnailimage/jpeg8327https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22491/9/TURNITIN_CUEVA%20ROLDAN%20RENZO%20AARON_20173255%20.pdf.jpg6cdc6b6ef2171fe4910605cf1c74f0e4MD5920.500.12724/22491oai:repositorio.ulima.edu.pe:20.500.12724/224912025-09-17 13:55:04.074Repositorio Universidad de Limarepositorio@ulima.edu.pe | 
| score | 13.085615 | 
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            