Improvement proposal based on machine learning, big data and DDMRP to improve forecasting compliance in a consumer goods company
Descripción del Articulo
Hoy en día, es crucial pronosticar con precisión los productos, especialmente para una empresa que importa sus productos. Disponer de una previsión precisa permite a la empresa optimizar la gestión de recursos, aumentando la productividad y evitando la sobreventa o subventa de productos. Además, est...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/21467 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/21467 |
Nivel de acceso: | acceso abierto |
Materia: | Aprendizaje automático Bienes de consumo duraderos Pronóstico de ventas Planificación de requerimientos de material https://purl.org/pe-repo/ocde/ford#2.11.04 |
Sumario: | Hoy en día, es crucial pronosticar con precisión los productos, especialmente para una empresa que importa sus productos. Disponer de una previsión precisa permite a la empresa optimizar la gestión de recursos, aumentando la productividad y evitando la sobreventa o subventa de productos. Además, establecer un modelo de planificación de materiales basado en la demanda es esencial para garantizar que nuestros proveedores cumplan con sus compromisos de nivel de servicio. En este proyecto de investigación, se emplean Machine Learning y Big Data para mejorar los métodos de previsión de las empresas de bienes de consumo. Se han entrenado los datos recopilados de las ventas de la empresa durante los últimos cuatro años para “la categoría de cabello” y se empleará el método Arima para predecir los primeros 8 meses del año 2023. Además, el Plan de requisitos de materiales impulsado por la demanda (DDMRP) se implementa para mejorar el nivel de servicio de los proveedores. El impacto del modelo propuesto se evaluará utilizando indicadores como el sesgo de pronóstico (FB), la precisión del pronóstico (FA), el error porcentual absoluto medio (MAPE) y el acuerdo de nivel de servicio (SLA). |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).