One-class models for validation of miRNAs and ERBB2 gene interactions based on sequence features for breast cancer scenarios

Descripción del Articulo

One challenge in miRNA–genes–diseases interaction studies is that it is challenging to find labeled data that indicate a positive or negative relationship between miRNA and genes. The use of one-class classification methods shows a promising path for validating them. We have applied two one-class cl...

Descripción completa

Detalles Bibliográficos
Autores: Gutiérrez Cárdenas, Juan Manuel, Wan, Zenghui
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/12936
Enlace del recurso:https://hdl.handle.net/20.500.12724/12936
https://doi.org/10.1016/j.icte.2021.03.001
Nivel de acceso:acceso abierto
Materia:Breast cancer
Molecular genetics
Cáncer de mama
Genética molecular
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:One challenge in miRNA–genes–diseases interaction studies is that it is challenging to find labeled data that indicate a positive or negative relationship between miRNA and genes. The use of one-class classification methods shows a promising path for validating them. We have applied two one-class classification methods, Isolation Forest and One-class SVM, to validate miRNAs interactions with the ERBB2 gene present in breast cancer scenarios using features extracted via sequence-binding. We found that the One-class SVM outperforms the Isolation Forest model, with values of sensitivity of 80.49% and a specificity of 86.49% showing results that are comparable to previous studies. Additionally, we have demonstrated that the use of features extracted from a sequence-based approach (considering miRNA and gene sequence binding characteristics) and one-class models have proven to be a feasible method for validating these genetic molecule interactions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).