Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning
Descripción del Articulo
Cryptocurrencies are a growing market that has attracted the attention of many investors in recent years. While cryptocurrencies offer a secure and decentralized form of payment, this market is highly volatile. Factors influencing price changes include the balance of supply and demand, its utility,...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/21708 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/21708 |
| Nivel de acceso: | acceso abierto |
| Materia: | Algoritmos Aprendizaje automático Criptomonedas https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
RULI_23fac713fe00dbda9eba9a8760bf3a6d |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/21708 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.en_EN.fl_str_mv |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| title |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| spellingShingle |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning Piccarreta Acosta, Riccardo Algoritmos Aprendizaje automático Criptomonedas https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| title_full |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| title_fullStr |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| title_full_unstemmed |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| title_sort |
Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning |
| author |
Piccarreta Acosta, Riccardo |
| author_facet |
Piccarreta Acosta, Riccardo Zavala Arana, Alejandra |
| author_role |
author |
| author2 |
Zavala Arana, Alejandra |
| author2_role |
author |
| dc.contributor.advisor.fl_str_mv |
Quiroz Flores, Juan Carlos |
| dc.contributor.author.fl_str_mv |
Piccarreta Acosta, Riccardo Zavala Arana, Alejandra |
| dc.subject.es_PE.fl_str_mv |
Algoritmos Aprendizaje automático Criptomonedas |
| topic |
Algoritmos Aprendizaje automático Criptomonedas https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
Cryptocurrencies are a growing market that has attracted the attention of many investors in recent years. While cryptocurrencies offer a secure and decentralized form of payment, this market is highly volatile. Factors influencing price changes include the balance of supply and demand, its utility, trading indicators, and market confidence. The present research aims to predict the price of the Cardano cryptocurrency by using machine learning techniques, specifically SVM, LSTM and BiLSTM models. In addition to accounting for financial indices, Twitter activity was used as a data source to measure market sentiment. The study analyzes various predictive horizons, including time ranges of 1 day, seven days, 14 days, 21 days and 30 days. The results obtained were validated with different performance indicators, and it was determined that the model predicts Cardano prices one month ahead with a MAPE of less than 22%, providing valuable information for investors interested in the volatile Cardano cryptocurrency market. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-12-12T14:41:52Z |
| dc.date.available.none.fl_str_mv |
2024-12-12T14:41:52Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.other.none.fl_str_mv |
Tesis |
| format |
bachelorThesis |
| dc.identifier.citation.es_PE.fl_str_mv |
Piccarreta Acosta, R., & Zavala Arana, A. (2024). Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21708 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/21708 |
| dc.identifier.isni.none.fl_str_mv |
121541816 |
| identifier_str_mv |
Piccarreta Acosta, R., & Zavala Arana, A. (2024). Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21708 121541816 |
| url |
https://hdl.handle.net/20.500.12724/21708 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad de Lima |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/4/T018_60191081_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/6/FA_60191081_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/8/TURNITIN_%20PICCARRETA%20ACOSTA%20RICCARDO_%2020181460.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/5/T018_60191081_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/7/FA_60191081_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/9/TURNITIN_%20PICCARRETA%20ACOSTA%20RICCARDO_%2020181460.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/1/T018_60191081_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/2/FA_60191081_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/3/TURNITIN_%20PICCARRETA%20ACOSTA%20RICCARDO_%2020181460.pdf |
| bitstream.checksum.fl_str_mv |
1cde85bcfa62e6efb51820517f4da3d7 1029323963a008505e3a0547341e7944 1c22a73c9f9cca0c94d217e2afc78037 40815c552a5e73c6b214d481d3dfb397 1b8a3f07529f6a8290b96fe2df522202 8dd9d68ec37f7b98646ce3efedbbf1eb dc45ed80d32b484e99805dfa9c7c3a3e a8476fa41bee918d64d33e869eb07840 77bca4bb95b0bd9ee2262eb382863a92 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1852320314247086080 |
| spelling |
Quiroz Flores, Juan CarlosPiccarreta Acosta, RiccardoZavala Arana, Alejandra2024-12-12T14:41:52Z2024-12-12T14:41:52Z2024Piccarreta Acosta, R., & Zavala Arana, A. (2024). Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21708https://hdl.handle.net/20.500.12724/21708121541816Cryptocurrencies are a growing market that has attracted the attention of many investors in recent years. While cryptocurrencies offer a secure and decentralized form of payment, this market is highly volatile. Factors influencing price changes include the balance of supply and demand, its utility, trading indicators, and market confidence. The present research aims to predict the price of the Cardano cryptocurrency by using machine learning techniques, specifically SVM, LSTM and BiLSTM models. In addition to accounting for financial indices, Twitter activity was used as a data source to measure market sentiment. The study analyzes various predictive horizons, including time ranges of 1 day, seven days, 14 days, 21 days and 30 days. The results obtained were validated with different performance indicators, and it was determined that the model predicts Cardano prices one month ahead with a MAPE of less than 22%, providing valuable information for investors interested in the volatile Cardano cryptocurrency market.Cryptomonedas son un mercado creciente que ha atraído la atención de varios inversionistas en los últimos años. Si bien las criptomonedas ofrecen una forma de pago segura y descentralizada, este mercado es muy volátil. Los factores que influyen en los cambios de precios incluyen el equilibrio de la oferta y la demanda, su utilidad, los indicadores de trading y la confianza del mercado. El objetivo de la presente investigación es predecir el precio de la criptomoneda Cardano mediante el uso de técnicas de aprendizaje automático, específicamente modelos de SVM, LSTM y BiLSTM. Además de tomar en cuenta índices financieros, se utilizó como fuente de datos la actividad en Twitter para medir la opinión del mercado. El estudio analiza diversos horizontes predictivos, incluyendo rangos de tiempo de 1 día, 7 días, 14 días, 21 días y 30 días. Los resultados obtenidos fueron validados con distintos indicadores de desempeño y se determinó que el modelo predice precios de Cardano con un mes de anticipación con un MAPE menor al 22% brindando información valiosa para los inversores interesados en el mercado volátil de la criptomoneda Cardano.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAlgoritmosAprendizaje automáticoCriptomonedasTwitterhttps://purl.org/pe-repo/ocde/ford#2.11.04Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learninginfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103001857220266019108176612634https://purl.org/pe-repo/renati/level#tituloProfesionalCorzo Chávez, Jorge AntonioTupia De la Cruz, Elmer LuisQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOITEXTT018_60191081_T.pdf.txtT018_60191081_T.pdf.txtExtracted texttext/plain15986https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/4/T018_60191081_T.pdf.txt1cde85bcfa62e6efb51820517f4da3d7MD54FA_60191081_SR.pdf.txtFA_60191081_SR.pdf.txtExtracted texttext/plain2607https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/6/FA_60191081_SR.pdf.txt1029323963a008505e3a0547341e7944MD56TURNITIN_ PICCARRETA ACOSTA RICCARDO_ 20181460.pdf.txtTURNITIN_ PICCARRETA ACOSTA RICCARDO_ 20181460.pdf.txtExtracted texttext/plain19600https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/8/TURNITIN_%20PICCARRETA%20ACOSTA%20RICCARDO_%2020181460.pdf.txt1c22a73c9f9cca0c94d217e2afc78037MD58THUMBNAILT018_60191081_T.pdf.jpgT018_60191081_T.pdf.jpgGenerated Thumbnailimage/jpeg10392https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/5/T018_60191081_T.pdf.jpg40815c552a5e73c6b214d481d3dfb397MD55FA_60191081_SR.pdf.jpgFA_60191081_SR.pdf.jpgGenerated Thumbnailimage/jpeg16353https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/7/FA_60191081_SR.pdf.jpg1b8a3f07529f6a8290b96fe2df522202MD57TURNITIN_ PICCARRETA ACOSTA RICCARDO_ 20181460.pdf.jpgTURNITIN_ PICCARRETA ACOSTA RICCARDO_ 20181460.pdf.jpgGenerated Thumbnailimage/jpeg8298https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/9/TURNITIN_%20PICCARRETA%20ACOSTA%20RICCARDO_%2020181460.pdf.jpg8dd9d68ec37f7b98646ce3efedbbf1ebMD59ORIGINALT018_60191081_T.pdfT018_60191081_T.pdfTesisapplication/pdf269188https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/1/T018_60191081_T.pdfdc45ed80d32b484e99805dfa9c7c3a3eMD51FA_60191081_SR.pdfFA_60191081_SR.pdfAutorizaciónapplication/pdf222741https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/2/FA_60191081_SR.pdfa8476fa41bee918d64d33e869eb07840MD52TURNITIN_ PICCARRETA ACOSTA RICCARDO_ 20181460.pdfTURNITIN_ PICCARRETA ACOSTA RICCARDO_ 20181460.pdfReporte de similitudapplication/pdf2253885https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21708/3/TURNITIN_%20PICCARRETA%20ACOSTA%20RICCARDO_%2020181460.pdf77bca4bb95b0bd9ee2262eb382863a92MD5320.500.12724/21708oai:repositorio.ulima.edu.pe:20.500.12724/217082025-09-18 08:06:27.901Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| score |
12.884832 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).