Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets

Descripción del Articulo

This article analyzes credit risk in the financial sector and proposes a methodology to improve its prediction accuracy using boosting algorithms such as XGBoost, LightGBM, and Boosted Random Forest. Datasets from the UCI Machine Learning Repository were used, including Statlog German Credit Data, A...

Descripción completa

Detalles Bibliográficos
Autor: Villanueva Mora, Renzo Orlando
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/23390
Enlace del recurso:https://hdl.handle.net/20.500.12724/23390
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_224cb19cc3b21f61ecd0edcfa678c485
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/23390
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
dc.title.alternative.en_EN.fl_str_mv Optimización de la predicción del riesgo crediticio en el sector financiero mediante algoritmos de boosting: un estudio comparativo con conjuntos de datos financieros
title Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
spellingShingle Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
Villanueva Mora, Renzo Orlando
Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
title_full Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
title_fullStr Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
title_full_unstemmed Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
title_sort Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasets
author Villanueva Mora, Renzo Orlando
author_facet Villanueva Mora, Renzo Orlando
author_role author
dc.contributor.advisor.fl_str_mv Escobedo Cardenas, Edwin Jonathan
dc.contributor.author.fl_str_mv Villanueva Mora, Renzo Orlando
dc.subject.es_PE.fl_str_mv Pendiente
topic Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description This article analyzes credit risk in the financial sector and proposes a methodology to improve its prediction accuracy using boosting algorithms such as XGBoost, LightGBM, and Boosted Random Forest. Datasets from the UCI Machine Learning Repository were used, including Statlog German Credit Data, Australian Credit Approval, and Bank Marketing. The methodology involved feature engineering, exploratory data analysis, and hyperparameter tuning. Additionally, a complementary strategy using K-means clustering was implemented to enhance the data. The results show that XGBoost outperforms the other models in various scenarios, and boosting-based methods deliver better performance than traditional approaches like decision trees and factorization machines—offering valuable insights for financial institutions.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-09-23T16:37:07Z
dc.date.available.none.fl_str_mv 2025-09-23T16:37:07Z
dc.date.issued.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/23390
dc.identifier.isni.none.fl_str_mv 0000000121541816
url https://hdl.handle.net/20.500.12724/23390
identifier_str_mv 0000000121541816
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/1/T018_72754378_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/2/FA_72754378.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/3/TURNITIN_DNI_72754378%20-%2020193654.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/4/T018_72754378_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/6/FA_72754378.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/8/TURNITIN_DNI_72754378%20-%2020193654.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/5/T018_72754378_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/7/FA_72754378.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/9/TURNITIN_DNI_72754378%20-%2020193654.pdf.jpg
bitstream.checksum.fl_str_mv 6a43d8a3015b9618d459066420174139
48045e3f2fadcd218ebd1e666007d40b
6b600cd4250817d28c3f7b0d44ed0466
55947bb6c038eaf58ed2ec6c7c147c47
8006eaadf78be844006ebd108415fc0d
090bfce0a50eae8e44caf6b8f2fc1ca7
b43aff4f5cac5d73eed02d5af83a19c7
0e2b72a978d2d37bb2458b5278c1e44b
5622317d554cd63d791ec83479f15732
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1847246238755323904
spelling Escobedo Cardenas, Edwin JonathanVillanueva Mora, Renzo Orlando2025-09-23T16:37:07Z2025-09-23T16:37:07Z2025https://hdl.handle.net/20.500.12724/233900000000121541816This article analyzes credit risk in the financial sector and proposes a methodology to improve its prediction accuracy using boosting algorithms such as XGBoost, LightGBM, and Boosted Random Forest. Datasets from the UCI Machine Learning Repository were used, including Statlog German Credit Data, Australian Credit Approval, and Bank Marketing. The methodology involved feature engineering, exploratory data analysis, and hyperparameter tuning. Additionally, a complementary strategy using K-means clustering was implemented to enhance the data. The results show that XGBoost outperforms the other models in various scenarios, and boosting-based methods deliver better performance than traditional approaches like decision trees and factorization machines—offering valuable insights for financial institutions.Este artículo analiza el riesgo crediticio en el sector financiero y propone una metodología para predecirlo con mayor precisión mediante algoritmos de boosting como XGBoost, LightGBM y Boosted Random Forest. Se utilizaron datasets del repositorio UCI como Statlog German Credit Data, Australian Credit Approval, Bank Marketing, entre otros, aplicando técnicas de feature engineering, análisis exploratorio y ajuste de hiperparámetros. Además, se incorporó una estrategia adicional con K-means para enriquecer los datos. Los resultados muestran que XGBoost supera a los demás modelos en distintos escenarios, y que los métodos de boosting ofrecen mejor desempeño que enfoques tradicionales como árboles de decisión y máquinas de factorización, lo cual resulta valioso para las entidades financieras.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Pendientehttps://purl.org/pe-repo/ocde/ford#2.02.04Optimizing credit risk prediction in the financial sector using boosting algorithms: a comparative study with financial datasetsOptimización de la predicción del riesgo crediticio en el sector financiero mediante algoritmos de boosting: un estudio comparativo con conjuntos de datos financierosinfo:eu-repo/semantics/bachelorThesisTesisreponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASUNEDUTitulo profesionalIngeniería de SistemasUniversidad de Lima. Facultad de IngenieríaIngeniero de Sistemashttps://orcid.org/0000-0003-2034-513X4521175561207672754378https://purl.org/pe-repo/renati/level#tituloProfesionalGuzman Jimenez, Rosario MarybelEscobedo Cardenas, Edwin JonathanQuintana Cruz, Hernan Alejandrohttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_72754378_T.pdfT018_72754378_T.pdfDescargarapplication/pdf319855https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/1/T018_72754378_T.pdf6a43d8a3015b9618d459066420174139MD51FA_72754378.pdfFA_72754378.pdfAutorizaciónapplication/pdf248503https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/2/FA_72754378.pdf48045e3f2fadcd218ebd1e666007d40bMD52TURNITIN_DNI_72754378 - 20193654.pdfTURNITIN_DNI_72754378 - 20193654.pdfReporte de similitudapplication/pdf544088https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/3/TURNITIN_DNI_72754378%20-%2020193654.pdf6b600cd4250817d28c3f7b0d44ed0466MD53TEXTT018_72754378_T.pdf.txtT018_72754378_T.pdf.txtExtracted texttext/plain13745https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/4/T018_72754378_T.pdf.txt55947bb6c038eaf58ed2ec6c7c147c47MD54FA_72754378.pdf.txtFA_72754378.pdf.txtExtracted texttext/plain4323https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/6/FA_72754378.pdf.txt8006eaadf78be844006ebd108415fc0dMD56TURNITIN_DNI_72754378 - 20193654.pdf.txtTURNITIN_DNI_72754378 - 20193654.pdf.txtExtracted texttext/plain17147https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/8/TURNITIN_DNI_72754378%20-%2020193654.pdf.txt090bfce0a50eae8e44caf6b8f2fc1ca7MD58THUMBNAILT018_72754378_T.pdf.jpgT018_72754378_T.pdf.jpgGenerated Thumbnailimage/jpeg12120https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/5/T018_72754378_T.pdf.jpgb43aff4f5cac5d73eed02d5af83a19c7MD55FA_72754378.pdf.jpgFA_72754378.pdf.jpgGenerated Thumbnailimage/jpeg21287https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/7/FA_72754378.pdf.jpg0e2b72a978d2d37bb2458b5278c1e44bMD57TURNITIN_DNI_72754378 - 20193654.pdf.jpgTURNITIN_DNI_72754378 - 20193654.pdf.jpgGenerated Thumbnailimage/jpeg8897https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23390/9/TURNITIN_DNI_72754378%20-%2020193654.pdf.jpg5622317d554cd63d791ec83479f15732MD5920.500.12724/23390oai:repositorio.ulima.edu.pe:20.500.12724/233902025-09-29 12:38:56.747Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.932078
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).