Data Mining para modelo predictivo de ventas y servicios de mantenimiento en un concesionario automotriz ligero

Descripción del Articulo

Lately the level of competition between companies in the light automotive industry is reaching a very high level, due to the various strategies developed by many competitors. Our study seeks to strengthen the evaluation of forecasts to improve the organization's capability to anticipate future...

Descripción completa

Detalles Bibliográficos
Autores: Becerra Rojas, Jocelyn Pamela, Villarreal Roca, Enrique Martin
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/15395
Enlace del recurso:https://hdl.handle.net/20.500.12724/15395
Nivel de acceso:acceso abierto
Materia:Pronóstico de ventas
Minería de datos
Concesionarios de automóviles
Sales forecast
Data mining
Automobile dealers
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Lately the level of competition between companies in the light automotive industry is reaching a very high level, due to the various strategies developed by many competitors. Our study seeks to strengthen the evaluation of forecasts to improve the organization's capability to anticipate future events in important business processes, such as sales and maintenance services. To achieve this objective, investigations related to Data Mining techniques were consulted, in order to perform an information analysis with a predictive approach. Our research involves designing different models applying methods such as regressions, neural networks and decision trees, to a historical database of an automotive organization, previously selecting data using techniques such as the correlation matrix and PCA (Principal Component Analysis). Finally, an evaluation is carried out on the results obtained after comparing the proposed models, where we find out that for sales forecasts, the neural network model implemented with PCA obtains better results; whereas, for maintenance services forecasts, the predominant model is the one implemented with Random Forest.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).