An explainable machine learning model to optimize demand forecasting in Company DEOS

Descripción del Articulo

Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understan...

Descripción completa

Detalles Bibliográficos
Autores: Cabrera Feijoo, Gianella Valeria, Germana Valverde, Jimena Mariana
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/18455
Enlace del recurso:https://hdl.handle.net/20.500.12724/18455
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Pronósticos económicos
Machine learning
Economic forecasting
https://purl.org/pe-repo/ocde/ford#2.11.04
Descripción
Sumario:Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).