Autonomous control of a mobile robot with incremental deep learning neural networks

Descripción del Articulo

Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by th...

Descripción completa

Detalles Bibliográficos
Autor: Glöde, Isabella
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/175709
Enlace del recurso:http://hdl.handle.net/20.500.12404/18676
Nivel de acceso:acceso abierto
Materia:Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
http://purl.org/pe-repo/ocde/ford#2.02.03
id RPUC_fba278c1afb0857c13bf58836b3238ad
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/175709
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Morán Cárdenas, Antonio ManuelGlöde, Isabella2021-03-29T20:39:40Z2021-03-29T20:39:40Z20212021-03-29http://hdl.handle.net/20.500.12404/18676Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Control automático--Robots móvilesAprendizaje profundoRedes neuronaleshttp://purl.org/pe-repo/ocde/ford#2.02.03Autonomous control of a mobile robot with incremental deep learning neural networksinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización10573987https://orcid.org/0000-0001-9059-1446CHLR78009712037Reger, JohannMorán Cárdenas, Antonio ManuelEnciso Salas, Luis Miguelhttps://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/175709oai:repositorio.pucp.edu.pe:20.500.14657/1757092024-06-10 09:57:27.011http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Autonomous control of a mobile robot with incremental deep learning neural networks
title Autonomous control of a mobile robot with incremental deep learning neural networks
spellingShingle Autonomous control of a mobile robot with incremental deep learning neural networks
Glöde, Isabella
Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
http://purl.org/pe-repo/ocde/ford#2.02.03
title_short Autonomous control of a mobile robot with incremental deep learning neural networks
title_full Autonomous control of a mobile robot with incremental deep learning neural networks
title_fullStr Autonomous control of a mobile robot with incremental deep learning neural networks
title_full_unstemmed Autonomous control of a mobile robot with incremental deep learning neural networks
title_sort Autonomous control of a mobile robot with incremental deep learning neural networks
author Glöde, Isabella
author_facet Glöde, Isabella
author_role author
dc.contributor.advisor.fl_str_mv Morán Cárdenas, Antonio Manuel
dc.contributor.author.fl_str_mv Glöde, Isabella
dc.subject.es_ES.fl_str_mv Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
topic Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
http://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.03
description Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-29T20:39:40Z
dc.date.available.none.fl_str_mv 2021-03-29T20:39:40Z
dc.date.created.none.fl_str_mv 2021
dc.date.issued.fl_str_mv 2021-03-29
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/18676
url http://hdl.handle.net/20.500.12404/18676
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638650112573440
score 13.836569
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).