Autonomous control of a mobile robot with incremental deep learning neural networks
Descripción del Articulo
Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by th...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/175709 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/18676 |
Nivel de acceso: | acceso abierto |
Materia: | Control automático--Robots móviles Aprendizaje profundo Redes neuronales http://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
RPUC_fba278c1afb0857c13bf58836b3238ad |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/175709 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Morán Cárdenas, Antonio ManuelGlöde, Isabella2021-03-29T20:39:40Z2021-03-29T20:39:40Z20212021-03-29http://hdl.handle.net/20.500.12404/18676Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Control automático--Robots móvilesAprendizaje profundoRedes neuronaleshttp://purl.org/pe-repo/ocde/ford#2.02.03Autonomous control of a mobile robot with incremental deep learning neural networksinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización10573987https://orcid.org/0000-0001-9059-1446CHLR78009712037Reger, JohannMorán Cárdenas, Antonio ManuelEnciso Salas, Luis Miguelhttps://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/175709oai:repositorio.pucp.edu.pe:20.500.14657/1757092024-06-10 09:57:27.011http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
Autonomous control of a mobile robot with incremental deep learning neural networks |
title |
Autonomous control of a mobile robot with incremental deep learning neural networks |
spellingShingle |
Autonomous control of a mobile robot with incremental deep learning neural networks Glöde, Isabella Control automático--Robots móviles Aprendizaje profundo Redes neuronales http://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Autonomous control of a mobile robot with incremental deep learning neural networks |
title_full |
Autonomous control of a mobile robot with incremental deep learning neural networks |
title_fullStr |
Autonomous control of a mobile robot with incremental deep learning neural networks |
title_full_unstemmed |
Autonomous control of a mobile robot with incremental deep learning neural networks |
title_sort |
Autonomous control of a mobile robot with incremental deep learning neural networks |
author |
Glöde, Isabella |
author_facet |
Glöde, Isabella |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Morán Cárdenas, Antonio Manuel |
dc.contributor.author.fl_str_mv |
Glöde, Isabella |
dc.subject.es_ES.fl_str_mv |
Control automático--Robots móviles Aprendizaje profundo Redes neuronales |
topic |
Control automático--Robots móviles Aprendizaje profundo Redes neuronales http://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.ocde.es_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-03-29T20:39:40Z |
dc.date.available.none.fl_str_mv |
2021-03-29T20:39:40Z |
dc.date.created.none.fl_str_mv |
2021 |
dc.date.issued.fl_str_mv |
2021-03-29 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.other.none.fl_str_mv |
Tesis de maestría |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/18676 |
url |
http://hdl.handle.net/20.500.12404/18676 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638650112573440 |
score |
13.836569 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).