Predictive space-time model for optimal allocation of security agents in Lima, Perú

Descripción del Articulo

Nowadays, one of the most critical problems in Peru is crime and citizen insecurity. Part of this problem is due to a precarious assignment of security agents in geographic strategical zones at the right time. Furthermore, there is a lack of knowledge by the part of community members about certain e...

Descripción completa

Detalles Bibliográficos
Autor: Cuya, Eduardo
Formato: documento de trabajo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/172123
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/172123
Nivel de acceso:acceso abierto
Materia:Data Mining
Public Security
Optimization
http://purl.org/pe-repo/ocde/ford#5.09.01
Descripción
Sumario:Nowadays, one of the most critical problems in Peru is crime and citizen insecurity. Part of this problem is due to a precarious assignment of security agents in geographic strategical zones at the right time. Furthermore, there is a lack of knowledge by the part of community members about certain existing patterns in crime. A large amount of data with geographic information, type of crime, time and other more meaningful variables is available to use. For this reason, the present research project is about a methodology using optimization models, machine learning and forecasting techniques to reduce these crime rates through the development of clusters that will allow us to identify the areas with the greatest confluence of crimes. A predictive spatial time model fed with data in real time will map the areas of high risk at a certain future point in the time. This model will be linked to an optimization model for assigning security agents to optimize and minimize the frequency of crimes and the existing citizen insecurity
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).